A short review on synthesis and characterisation of nano SiO2/TiO2 composite for insulation application

Authors

  • Nurul Farrahani Azlan School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Suffiyana Akhbar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Suhaiza Hanim Hanipah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Rahida Wati Sharudin School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v4i2.14972

Keywords:

TiO2 nanoparticle, SiO2 nanoparticle, Polymer composites, Processing method, Insulation application

Abstract

Silica dioxide (SiO2), and titanium dioxide (TiO2) are nanoparticle fillers that are widely incorporated into polymer matrix for thermal insulation application. Combination of both fillers in producing polymer nanocomposite is interesting to review. This paper reviews on the current and recent research on the method to incorporate the SiO2/TiO2 nanoparticles as the fillers into various polymer matrix such as direct mixing, intercalation, sol-gel and in situ polymerisation as well as the effect of nanofillers on the thermal properties, morphology studies, rheology behaviour, mechanical property, and conductivity (thermal and electrical) of the SiO2/TiO2 polymer nanocomposites. This paper also reviews the effect of SiO2/TiO2 nanoparticles to the polymer nanocomposites in term of dielectric properties as a potential electrical insulation material. SiO2 nanoparticles presented to be the best filler to enhance the dielectric properties compared to the TiO2. When both of nanofillers are incorporated into the polymer matrix, a better result in term of mechanical, thermal, and electrical insulation properties are produced.

References

Abdul Kaleel, S. H., Bahuleyan, B. K., Masihullah, J., & Al-Harthi, M. (2011). Thermal and mechanical properties of polyethylene/doped-TiO 2 nanocomposites synthesized using in situ polymerization. Journal of Nanomaterials, 2011(i). https://doi.org/10.1155/2011/964353

Akmal, M. J. N., Afendi, M. P. M., Asiah, M. N., Addawiyah, Z. R., & Faizal, K. N. (2013). Effects of SiO2 and TiO2 nanofillers on conductivity level of LLDPE-NR nanocomposite HV insulator. Applied Mechanics and Materials, 284–287, 305–309. https://doi.org/10.4028/www.scientific.net/AMM.284-287.305

Alapati, S., & Joy Thomas, M. (2012). Influence of nano-fillers on electrical treeing in epoxy insulation. IET Science, Measurement and Technology, 6(1), 21–28. https://doi.org/10.1049/iet-smt.2011.0046

Amin, M., & Ali, M. (2015). Polymer nanocomposites for high voltage outdoor insulation applications. Reviews on Advanced Materials Science, 40(3), 276–294.

Amin, M., Ali, M., & Khattak, A. (2018). Fabrication, mechanical, thermal, and electrical characterization of epoxy/silica composites for high-voltage insulation. Science and Engineering of Composite Materials, 25(4), 753–759. https://doi.org/10.1515/secm-2015-0445

Awad, A. H., Aly Abd El-Wahab, A., El-Gamsy, R., & Abdel-latif, M. H. (2019). A study of some thermal and mechanical properties of HDPE blend with marble and granite dust. Ain Shams Engineering Journal, 10(2), 353–358. https://doi.org/10.1016/j.asej.2018.08.005

Awais, M., Sundararajan, R., Sajjad, I. A., Haroon, S. S., Amin, S., Shaukat, H., & Nasir, M. A. (2019). Investigation on optimal filler loadings for dielectric strength enhancement of epoxy/TiO2@SiO2 nanocomposite. Materials Research Express, 6(6), 0–8. https://doi.org/10.1088/2053-1591/ab0ef2

Bi, J., Gu, Y., Zhang, Z., Wang, S., Li, M., & Zhang, Z. (2016). Core-shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss. Materials and Design, 89, 933–940. https://doi.org/10.1016/j.matdes.2015.10.050

Budiarti, H. A., Puspitasari, R. N., Hatta, A. M., Sekartedjo, & Risanti, D. D. (2017). Synthesis and Characterization of TiO2@SiO2 and SiO2@TiO2 Core-Shell Structure Using Lapindo Mud Extract via Sol-Gel Method. Procedia Engineering, 170, 65–71. https://doi.org/10.1016/j.proeng.2017.03.013

Chae, D. W., Kim, K. J., & Kim, B. C. (2006). Effects of silicalite-1 nanoparticles on rheological and physical properties of HDPE. Polymer, 47(10), 3609–3615. https://doi.org/10.1016/j.polymer.2006.03.053

Check, Q., Polymer, O., Melt, U., & Index, F. (2020). Blog. 1–4.

Du, B., Chen, F., Luo, R., Zhou, S., & Wu, Z. (2019a). Composite Resin. 2019.

Du, B., Chen, F., Luo, R., Zhou, S., & Wu, Z. (2019b). Synthesis and Characterization of Nano-TiO2/SiO2-Acrylic Composite Resin. 2019.

Polizos, G., Tuncer, E., Sauers, I., James, D. R., Ellis, A. R., & More, K. L. (2010). Electrical and mechanical properties of titanium dioxide nanoparticle filled epoxy resin composites. AIP Conference Proceedings, 1219(1), 41–46. https://doi.org/10.1063/1.3402331

Ge, X., Xia, Y., & Cao, Z. (2015). Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribology International, 92, 454–461. https://doi.org/10.1016/j.triboint.2015.07.031

Grozdanov, A., Gentile, G., Avella, M., Dobreva, T., & Kotsilkova, R. (2019). Nanocomposite coatings based on alkyd resin with TiO2 and SiO2 nanoparticles. Material Science & Engineering International Journal, 3(6), 210–215. https://doi.org/10.15406/mseij.2019.03.00116

Habashy, M. M., Abd-Elhady, A. M., Elsad, R. A., & Izzularab, M. A. (2019). Performance of PVC/SiO2 nanocomposites under thermal ageing. Applied Nanoscience (Switzerland), 0(0), 0. https://doi.org/10.1007/s13204-018-00941-y

Hidayah, I. N., Mariatti, M., Ismail, H., & Kamarol, M. (2015). Evaluation of PP/EPDM nanocomposites filled with SiO2, TiO2 and ZnO nanofillers as thermoplastic elastomeric insulators. Plastics, Rubber and Composites, 44(7), 259–264. https://doi.org/10.1179/1743289815Y.0000000014

Hu, Z., Li, L., Sun, B., Meng, S., Chen, L., & Zhu, M. (2015). Effect of TiO2@SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers. Progress in Natural Science: Materials International, 25(4), 310–315. https://doi.org/10.1016/j.pnsc.2015.08.004

Jaroenworaluck, A., Pijarn, N., Kosachan, N., & Stevens, R. (2012). Nanocomposite TiO 2-SiO 2 gel for UV absorption. Chemical Engineering Journal, 181–182, 45–55. https://doi.org/10.1016/j.cej.2011.08.028

Kadhim, R. G. (2015). Study the Electrical and Structural Properties of ( PMMA-TiO 2 ) nanocomposites. 7(9), 37–49.

Kim, K., Ahn, K., Ju, H., & Kim, J. (2016). Improvement of Insulating and Thermal Properties of SiO2-Coated Copper Nanowire Composites. Industrial and Engineering Chemistry Research, 55(10), 2713–2720. https://doi.org/10.1021/acs.iecr.5b04141

Mallakpour, S., & Naghdi, M. (2018). Progress in Materials Science Polymer / SiO 2 nanocomposites : Production and applications (Vol. 97, Issue April).

Mathew, M. W., Ismail, L. N., Sihab, N., Samad, A. A. A., & Salim, N. A. (2018). Insulation properties of PMMA:TiO2 nanodielectric film for high voltage applications. Indonesian Journal of Electrical Engineering and Computer Science, 12(2), 527–534. https://doi.org/10.11591/ijeecs.v12.i2.pp527-534

Mohamed Ghouse, S., Venkatesh, S., Rajesh, R., & Natarajan, S. (2013). Effects of SiO2 and TiO2 nano fillers in enhancing the insulation breakdown strength of epoxy nano composite dielectric under divergent electric fields. International Journal on Electrical Engineering and Informatics, 5(4), 501–518. https://doi.org/10.15676/ijeei.2013.5.4.9

Mohan, D. G., Gopi, S., Rajasekar, V., Krishnan, K., Mohan, D. G., Gopi S., Selvarajan, L., Rajavel, R., Prakash, B., Mohan, D. G., Gopi, S., Alloys, A. A., Taguchi, U., Selvarajan, L., Sasikumar, R., Mohan, D. G., Naveen Kumar, P., & Muralidharan, V. (2019). Optimization of Dielectric Strength of Polymer/TiO2 Nanocomposites for High Voltage Insulation. Materials Today: Proceedings, 27(xxxx), 0–31. https://doi.org/10.1080/14484846.2018.1432089

Musa, M., Arief, Y. Z., Abdul-Malek, Z., Ahmad, M. H., & Jamil, A. A. A. (2013). Influence of nano-titanium dioxide (TiO2) on electrical tree characteristics in silicone rubber based nanocomposite. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 498–501. https://doi.org/10.1109/CEIDP.2013.6748120

Nakhaei, O., Shahtahmassebi, N., Rezaee Roknabadi, M., & Behdani, M. (2016). Fabrication and study of UV-shielding and photocatalytic performance of uniform TiO2/SiO2 core-shell nanofibers via single-nozzle co-electrospinning and interface sol-gel reaction. Scientia Iranica, 23(6), 3135–3144. https://doi.org/10.24200/sci.2016.4018

Nasir, M., Juliandri, & Prihandoko, B. (2015). Fabrication of SiO2-TiO2/PVDF Copolymer Nanofiber Composite by Electrospinning Process. Procedia Chemistry, 16, 184–189. https://doi.org/10.1016/j.proche.2015.12.034

Pleşa, I., Noţingher, P. V., Schlögl, S., Sumereder, C., & Muhr, M. (2016). Properties of polymer composites used in high-voltage applications. Polymers, 8(5). https://doi.org/10.3390/polym8050173

Pleşa, I., Noţingher, P. V., Stancu, C., Wiesbrock, F., & Schlögl, S. (2018). Polyethylene nanocomposites for power cable insulations. Polymers, 11(1), 1–60. https://doi.org/10.3390/polym11010024

Rafiq, M., Li, C., Du, Q., Lv, Y., & Yi, K. (2016). Effect of SiO2 nanoparticle on insulating breakdown properties of transformer oil. ICHVE 2016 - 2016 IEEE International Conference on High Voltage Engineering and Application, 0–3. https://doi.org/10.1109/ICHVE.2016.7800767

Rahman, T. ur, Amin, S., Shaukat, H., Haroon, S. S., Sajjad, I. A., & Awais, M. (2019). Effect of nano filler concentration on leakage current and partial discharge properties of zepoxy nano composites. SN Applied Sciences, 1(10), 1–9. https://doi.org/10.1007/s42452-019-1227-4

Regalado-Raya, R., Romero-Romero, R., Avilés-García, O., & Espino-Valencia, J. (2018). Synthesis and characterization of TiOSynthesis and characterization of TiO 2 /SiO 2 monoliths as photocatalysts on methanol oxidation. International Journal of Photoenergy, 2018. https://doi.org/10.1155/2018/8478240

Said, E., Othman, E., Ezz-eldin, M., Taha, H., & El-Kattan, W. (2019). Modified Cable Insulation Characteristics Using Nano Composites for the Nuclear Power Plant. Journal of Electrical & Electronic Systems, 8(1), 1–5. https://doi.org/10.4172/2332-0796.1000298

Sun, G., Yang, L., & Liu, R. (2021). Thermal insulation coatings based on microporous particles from Pickering emulsion polymerization. Progress in Organic Coatings, 151(September 2020). https://doi.org/10.1016/j.porgcoat.2020.106023

Syatirah, M. N., Muhamad, N. A., Halim, K. A. A., Zakariya, M. Z., Anuar, M. N. K., & Zaidi, A. A. H. (2020). A Review: Polymer-based Insulation Material for HVDC Cable Application. IOP Conference Series: Materials Science and Engineering, 932(1). https://doi.org/10.1088/1757-899X/932/1/012064

Varnagiris, S., Girdzevicius, D., Urbonavicius, M., & Milcius, D. (2017). Incorporation of SiO2 and TiO2 additives into expanded polystyrene foam using physical vapour deposition technique. Energy Procedia, 128, 525–532. https://doi.org/10.1016/j.egypro.2017.09.073

Venckatesh, R., Balachandaran, K., & Sivaraj, R. (2012). Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route. International Nano Letters, 2(1). https://doi.org/10.1186/2228-5326-2-15

Viswanathan, P. K., & Chandrasekar, S. (2018). Influence of semi conductive nanoparticles on insulation properties of Mineral oil. 2018 20th National Power Systems Conference, NPSC 2018. https://doi.org/10.1109/NPSC.2018.8771762

Wang, S., Yu, S., Li, J., & Li, S. (2020). Motion in Epoxy Resin-Based Nanocomposites.

Wang, W., & Li, S. (2019). Improvement of dielectric breakdown performance by surface modification in polyethylene/TiO2 nanocomposites. Materials, 12(20). https://doi.org/10.3390/ma12203346

Wu, C. S. (2007). Characterizing polycaprolactone/SiO2-TiO2 nanocomposites synthesized via in situ sol-gel polymerization. Designed Monomers and Polymers, 10(4), 311–326. https://doi.org/10.1163/156855507781505129

Yan, W., Phung, B. T., Han, Z. J., & Ostrikov, K. K. (2013). Characteristics of epoxy resin/SiO2 nanocomposite insulation: Effects of plasma surface treatment on the nanoparticles. Journal of Nanoscience and Nanotechnology, 13(5), 3371–3376. https://doi.org/10.1166/jnn.2013.7267

Yan, W., Phung, B. T., Han, Z., & Ostrikov, K. (2012). Reinforced insulation properties of epoxy resin/SiO2 nanocomposites by atmospheric pressure plasma modification. Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2012, 391–394. https://doi.org/10.1109/IPMHVC.2012.6518762

Yu, Y. (2015). The research and development of heat insulation materials with low thermal-conductivity in high temperature. d(Mebe), 868–871. https://doi.org/10.2991/mebe-15.2015.194

Zeng, X., Yu, S., Sun, R., & Xu, J. Bin. (2015). Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core-shell CNT@SiO2 hybrids as fillers. Composites Part A: Applied Science and Manufacturing, 73, 260–268. https://doi.org/10.1016/j.compositesa.2015.03.015

Zeng, X., Yu, S., Ye, L., Li, M., Pan, Z., Sun, R., & Xu, J. (2015). Encapsulating carbon nanotubes with SiO2: A strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation. Journal of Materials Chemistry C, 3(1), 187–195. https://doi.org/10.1039/c4tc01051e

Zhao, Y., Qi, X., Dong, Y., Ma, J., Zhang, Q., & Song, L. (2016). Mechanical , thermal and tribological properties of polymerization. 599–608.

Downloads

Published

2021-10-31

How to Cite

Azlan, N. F., Akhbar, S., Hanipah, S. H., & Sharudin, R. W. (2021). A short review on synthesis and characterisation of nano SiO2/TiO2 composite for insulation application. Malaysian Journal of Chemical Engineering &Amp; Technology, 4(2), 155–166. https://doi.org/10.24191/mjcet.v4i2.14972