Optimisation of stormwater purification in progressive freeze concentration: Stirring speed and initial concentration

Authors

  • Farah Hanim Ab Hamid School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Nur Asyida Mohd Asyrul School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v4i1.12651

Keywords:

Progressive freeze concentration, Stormwater, Water treatment, Solute recovery, Response surface methodology

Abstract

A method has been earnestly studied which is progressive freeze concentration (PFC). In this study, zinc chloride dissolved in distilled water has been used to signify stormwater as its amount is the highest and high toxicity in actual stormwater. Response surface methodology (RSM) was employed to determine the optimum condition of the process. The experiment was run by using the data generated from STATISTICA software with constant coolant temperature and rotation time which is at −8 °C and 15 minutes. The interaction between the process conditions gave significant effects to the effective partition constant (K), and solute recovery (Y). The predicted optimum condition for the system within the experimental ranges would be a stirring speed of 245 rpm and initial concentration of 6.846 mg/L with the best value for K and Y are predicted at 0.3357 and 0.5856, respectively. Shortage of clean water supply, flooding and excessive stormwater runoff became a concern towards the human being as these problems cannot be simply solved by building a specific pipeline system. Thus, an excellent approach and process needed to manage and purify the stormwater as well as transform it as one of the clean water resources.

References

A. D. Ortega Sandoval, V. Barbosa Brião, V. M. Cartana Fernandes, A. Hemkemeier, & M. T. Friedrich. (2019). Stormwater Management by Microfiltration and Ultrafiltration Treatment. Journal of Water Process Engineering. 30. 100453. doi:https://doi.org/10.1016/j.jwpe.2017.07.018

A. Goonetilleke, A. Liu, S. Managi, C. Wilson, T. Gardner, E. R. Bandala, & D. Rajapaksa. (2017). Stormwater Reuse, A Viable Option: Fact or Fiction? Economic Analysis and Policy. 56. 14–17. doi:https://doi.org/10.1016/j.eap.2017.08.001

B. Xu, X. Wang, J. Liu, J. Wu, Y. Zhao, & W. Cao. (2017). Improving Urban Stormwater Runoff Quality by Nutrient Removal through Floating Treatment Wetlands and Vegetation Harvest. Scientific Reports. 7(1). 7000. doi:10.1038/s41598-017-07439-7

C. Cojocaru, & M. Khayet. (2011). Sweeping gas membrane distillation of sucrose aqueous solutions: Response Surface Modeling and Optimization. Separation and Purification Technology. 81(1). 12–24. doi:10.1016/j.seppur.2011.06.031

C. J. Walsh, T. D. Fletcher, & M. J. Burns. (2012). Urban Stormwater Runoff: A New Class of Environmental Flow Problem. PLoS ONE. 7(9). 45814.

C. Li, M. Liu, Y. Hu, T. Shi, X. Qu, & M. T. Walter. (2018). Effects of Urbanization on Direct Runoff Characteristics in Urban Functional Zones. Science of the Total Environment. 643. 301–311. doi:https://doi.org/10.1016/j.scitotenv.2018.06.211

F. H. Ab Hamid, N. A. Rahim, A. Johari, N. Ngadi, Z. Yamani Zakaria, & M. Jusoh. (2015). Desalination of Seawater through Progressive Freeze Concentration Using a Coil Crystallizer. Water Science & Technology: Water Supply. 15. 625. doi:10.2166/ws.2015.019

I. A. W. Tan, A. L. Ahmad, & B. H. Hameed. (2008). Preparation of Activated Carbon from Coconut Husk: Optimization Study on Removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials. 153(1–2). 709–717. doi:http://dx.doi.org/10.1016/j.jhazmat.2007.09.014

M. B. Kirkham. (2014). Chapter 3 - Structure and Properties of Water. In M. B. Kirkham (Ed.), Principles of Soil and Plant Water Relations (Second Edition) (27–40). Boston: Academic Press.

M. Jusoh, A. Johari, N. Ngadi, & Z. Zakaria. (2013). Process Optimization of Effective Partition Constant in Progressive Freeze Concentration of Wastewater. Advances in Chemical Engineering and Science. 03. 286–293. doi:10.4236/aces.2013.34036

M. T. Khan, M. Busch, V. G. Molina, A.-H. Emwas, C. Aubry, & J.-P. Croue. (2014). How Different Is the Composition of The Fouling Layer oOf Wastewater Reuse and Seawater Desalination RO Membranes? Water Research. 59. 271–282. doi:https://doi.org/10.1016/j.watres.2014.04.020

N. Yahya, L. W. Jie, Z. Y. Zakaria, N. Ngadi, Z. Mohamad, R. A. Rahman, & M. Jusoh. (2017). Water Purification of Lake Water Using Progressive Freeze Concentration Method. Chemical Engineering Transactions. doi:10.3303/CET1756008

N. Yahya, N. Ismail, Z. Y. Zakaria, N. Ngadi, R. A. Rahman, & M. Jusoh. (2017). The Effect of Coolant Temperature and Stirrer Speed for Concentration of Sugarcane via Progressive Freeze Concentration Process. Chemical Engineering Transactions. 56. 1147–1152.

N. Z. Safiei, & B. J. Shaikh Alaudin. (2021). Optimization of Labisia Pumila Extract Concentration via Block Freeze Concentration Assisted with Centrifugation Method. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.11.188

O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, & K. Kagitani. (2005). Tubular Ice System for Scale-Up of Progressive Freeze-Concentration. Journal of Food Engineering. 69(1). 107–113. doi:10.1016/j.jfoodeng.2004.07.016

O. Miyawaki, S. Kato, & K. Watabe. (2012). Yield Improvement in Progressive Freeze-Concentration by Partial Melting of Ice. Journal of Food Engineering. 108(3). 377–382. doi:10.1016/j.jfoodeng.2011.09.013

R. V. Muralidhar, R. R. Chirumamila, R. Marchant, & P. Nigam. (2001). A Response Surface Approach for the Comparison of Lipase Production by Candida Cylindracea using Two Different Carbon Sources. Biochemical Engineering Journal. 9(1). 17–23. doi:https://doi.org/10.1016/S1369- 703X(01)00117-6

S. Egemose, M. J. Sønderup, A. Grudinina, A. S. Hansen, & M. R. Flindt. (2015). Heavy Metal Composition in Stormwater and Retention in Ponds Dependent on Pond Age, Design and Catchment Type. Environmental Technology. 36(8). 959–969. doi:10.1080/09593330.2014.970584

S. H. Md-Zamani, N. Yahya, Z. Y. Zakaria, & M. Jusoh. (2015). Fractional Freezing of Ethanol and Water Mixture. Jurnal Teknologi. 74(7). 49–52. doi: https://doi.org/10.11113/jt.v74.4697

S. Keshani, A. Luqman Chuah, M. M. Nourouzi, R. A.R., & B. Jamilah. (2010). Optimization of Concentration Process on Pomelo Fruit Juice using Response Surface Methodology (RSM). International Food Research Journal. 17. 733–742.

S. Moharramzadeh, S. K. Ong, J. Alleman, & K. S. Cetin. (2021). Parametric Study of the Progressive Freeze Concentration for Desalination. Desalination. 510. 115077. doi:https://doi.org/10.1016/j.desal.2021.115077

S. Samsuri, N. A. Amran, N. Yahya, & M. Jusoh. (2016). Review on Progressive Freeze Concentration Designs. Chemical Engineering Communications. 203(3). 345–363. doi:10.1080/00986445.2014.999050

Downloads

Published

2021-05-21

How to Cite

Ab Hamid, F. H., & Mohd Asyrul, N. A. (2021). Optimisation of stormwater purification in progressive freeze concentration: Stirring speed and initial concentration. Malaysian Journal of Chemical Engineering and Technology, 4(1), 8–14. https://doi.org/10.24191/mjcet.v4i1.12651