High molecular weight of polylactic acid (PLA): A Review on the effect of initiator

Authors

  • Norliza Ibrahim School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Anis Nuranisya Shamsuddin School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v4i1.12906

Keywords:

Lactide, Polylactic Acid, Polymerisation, Initiator, Molecular Weight

Abstract

This article reviews various initiator used to synthesize high molecular weight (MW >10,000 g/mol) of polylactic acid (PLA) through ring-opening polymerisation (ROP) of lactide. ROP has been chosen as the best method in producing PLA. On the other hand, stannous octoate (Sn(Oct)2) has been reported as the best catalyst used for ROP method. Many researchers have studied that polymerisation rate with the presence of only Sn(Oct)2 as catalyst is slow compared to polymerisation of lactide with the presence of initiator. An initiator is also favourable in producing high molecular weight of PLA as it can initiate the synthesis of PLA. Therefore, this review focus on ROP method catalysed by Sn(Oct)2 using different solvent as initiator. Among groups of initiators being reviewed are hydroxyl, carboxylic acid, aldehyde, aliphatic polyester and organophosphorus compound. Most of the studies applied in nitrogen atmosphere with a temperature range of 125 to 200 °C, while only one study in vacuum condition. Duration of the polymerisation time is between 1 to 24 hours. Based on the review, alcohol (hydroxyl group initiator) has been reported as the best initiator to produce high molecular weight of PLA. This functional group act as co-initiator molecule that reacts with Sn(Oct)2, forming the initiating stannous alkoxide linkage. The linkage is necessary to propagate monomer addition and hence increase the MW. 

References

A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J.H. Jang, M. Abu-Omar, S.L. Scott, S. Suh, (2020). Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 8, 3494−3511.

A. Duda, P. Kubisa, G. Lapienis,S. Slomkowski, (2014). Milestones in Development of a Ringopening Polymerization of the Heterocyclic Monomers—View from A Personal Perspective. Polimery 59(1). 9–23.

A.C. Motta and E.A. De Rezende Duek (2014). Synthesis and Characterization of A Novel Terpolymer Based on L-Lactide, D,L-Lactide and Trimethylene Carbonate. Mater. Res. 17(3). 619–626.

A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini and R. Maciel (2012). Poly-lactic Acid Synthesis for Application in Biomedical Devices —A review. Biotechnol. Adv. 30 (1). 321–328.

B. Azimi, P. Nourpanah, M. Rabiee and S. Arbab, (2014). Poly (lactide-co-glycolide) Fiber: An Overview. J. Eng. Fiber. Fabr. 9(1). 2014. 47–66.

B. Geueke, (2014). Dossier–Bioplastics as Food Contact Materials. Food Packag. Forum April. 1–8.

B. Gupta, N. Revagade and J. Hilborn (2007). Poly(lactic acid) Fiber: An Overview. Prog. Polym. Sci. 32(4). 455–482.

C. Jérôme and P. Lecomte (2008). Recent Advances in the Synthesis of Aliphatic Polyesters by RingOpening Polymerisation. Adv. Drug Deliv. Rev. 60(9). 1056–1076.

C. Lee and S. Hong, (2014). An Overview of the Synthesis and Synthetic Mechanism of Poly(Lactic acid). Mod. Chem. Appl. 2(4). 1–5.

C. Liu, Y. Jia , A. He, (2013). Preparation of Higher Molecular Weight Poly(L-lactic acid) by chain extension. Int. J. Polym. Sci. 1–7.

D. Garlotta, (2019). A Literature Review of Poly (Lactic Acid ). J. Polym. Environ. 9. 63–84.

D. Pholharn, Y. Srithep, and J. Morris (2017). Effect of Initiators on Synthesis of Poly(L-lactide) by ring opening polymerisation. IOP Conf. Ser. Mater. Sci. Eng. 213. 1–8.

D. Pholharn, Y. Srithep, J. Morris, (2019). Ring Opening Polymerisation of Poly(L-Lactide) by Macro-initiator. AIP Conf. Proc. 2065. 030016(1–5).

F. Achmad, K. Yamane, S. Quat, T. Kokugan, (2009). Synthesis of Polylactic Acid by Direct Polycondensation under Vacuum without Catalysts, Solvents and Initiators. Chem. Eng. J. 151. 342– 350.

G.M. Arifuzzaman Khan, M. Terano, M. Shamsulalam, (2013). Synthesis and Characterisation of High Molecular Weight Poly(LLactic Acid) using Stannous Octoate/Maleic Anhydride Binary Catalyst System. J. Polym. Mater. 30(4). 397–410.

H. Korhonen, A. Helminen, J. V. Seppälä, (2001). Synthesis of Polylactides In The Presence of CoInitiators With Different Numbers of Hydroxyl Groups. Polymer (Guildf). 42(18). 7541–7549.

H. Tsuji, (2005). Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 5(7). 569–597.

I. Valentina, A. Haroutioun, L. Fabrice, V. Vincent, P. Roberto, (2017). Tuning the Hydrolytic Degradation Rate of Poly-Lactic Acid (PLA ) to More Durable Applications. AIP Conf. Proc. 1914 (210001). 1–5.

J. Muller, C. González Martínez, A. Chiralt, (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel). 10(952). 1–22.

J. E. Báez, Á. Marcos-Fernández, P. Galindo-Iranzo, (2011). Exploring the Effect of Alkyl End Group on Poly(L-Lactide) Oligo-esters. Synthesis and characterisation. J. Polym. Res. 18(5). 1137–1146.

J.J.F. Cardoso, Y.G.C. Queirós, K.J.A. Machado, J. M. Costa,E.F. Lucas, (2013). Synthesis, Characterisation, and in Vitro Degradation of Poly(Lactic Acid) Under Petroleum Production Conditions. Brazilian J. Pet. Gas 7(2). 57–69.

K. Kim, M.A. Elsawy, K. Kim, J. Park, A. Deep, (2017). Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renew. Sustain. Energy Rev. 79. 1346–1352.

L. Mezzasalma, A.P. Dove, O. Coulembier, (2017). Organocatalytic Ring–Opening Polymerisation of L-Lactide in Bulk: A Long Standing Challenge. Eur. Polym. J. 95. 628–634.

L. Wang, C. Cai, C.M. Dong, (2008). Synthesis, Characterisation And Nanoparticle Formation of Star-Shaped Poly(L-Lactide) with Six Arms. Chinese J. Polym. Sci. 26(2). 161–169.

L. Xiao, B. Wang, G. Yang, M. Gauthier, (2012). Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. Biomed. Sci. Eng. Technol. 11. 247–282.

L.T. Sin and B.S. Tueen (2019). Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA. Chapter 2.4.2. Second Edition. Elsevier Inc.

L.P. Icart, E. Fernandes, L. Aguero, M.Z. Cuesta, D.Z. Silva, D.E. Rodriguez-Fernandez, F.G. Souza Jr, L.M.T.R. Lima, M.L. Dias, (2018). End Functionalisation by Ring Opening Polymerisation: Influence of Reaction Conditions on the Synthesis of End Functionalized Poly(lactic Acid). J. Braz. Chem. Soc. 29(1). 99–108.

M. Gong, Q. Zhao, L. Dai, Y. Li, T. Jiang, (2017). Fabrication of Polylactic Acid/Hydroxyapatite/Graphene Oxide Composite and Their Thermal Stability, Hydrophobic and Mechanical Properties. J. Asian Ceram. Soc., 5(2). 160–168.

M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studie. Compr. Rev. Food Sci. Food Saf. 9. 552–571.

M. Niaounakis, (2013). Biopolymers : Reuse , Recycling And Disposal. Whaltman, Elsevier Inc.

M. Sobczak, (2012). Ring-opening Polymerisation of Cyclic Esters in the Presence of Choline/(SnOct)2 Catalytic System. Polym. Bull. 68(9). 2219–2228.

M.S. Lopes, A.L. Jardini and R.M. Filho, (2014). Synthesis and Characterisations of Poly(Lactic Acid) by Ring-Opening Polymerisation for Biomedical Applications. Chem. Eng. Trans. 38. 331–336.

N.E. Kamber, W. Jeong, R.M. Waymouth, R.C. Pratt, B.G.G. Lohmeijer, J.L. Hedrick, (2007). Organocatalytic Ring-opening Polymerisation. Chem. Rev. 107(12). 5813–5840.

O. Avinc and A. Khoddami, (2016). Overview of Poly(lactic acid) (PLA) Fibre : Part I : Production, Properties, Performance, Environmental Impact and End-use Applications of Poly(lactic acid) Fibre. Fibre 41(6). 391–401.

O. Nuyken and S.D. Pask, (2013). Ring-Opening Polymerisation—An Introductory Review. Polymers (Basel) 5. 361–403.

O. Wilfred, H. Tai1, R. Marriott, Q. Liu, V. Tverezovskiy, S. Curling, H. Tai, Z. Fan, W. Wang, (2018). Biodegradation of Polylactic Acid and Starch Composites in Compost and Soil. Int. J.Nano Res. 1:2. 1–11.

P. Kaur, (2018). Kinetics of Polymerisation of Poly(Lactic Acid) under Different Environments. J. Chem. Chem. Sci. 8(4). 713–720.

P. Kaur, R. Mehta, D. Berek, and S.N. Upadhyay, (2014). Synthesis of Polylactide : Effect of Dispersion of the Initiator. J. of Macromolecular Sci. Part A Pure Appl. Chem. 48. 840–845.

R. Kumar Mishra, R. Dattatray Karande, V.K. Abitha, A. Vasudeo Rane, (2015). Preparation of Polylactide from Synthesized Lactic Acid and Effect of Rection Parameters on Conversion. J. Mater. Sci. Eng. with Adv. Technol. 12(1-2). 1–37.

S. Kaihara, S. Matsumura, A. G. Mikos, and J. P. Fisher (2007). Synthesis of Poly(L-lactide) and Polyglycolide by Ring-opening Polymerisation. Nat. Protoc. 2(11). 2667–2671.

S. I. Moon, I. Taniguchi, M. Miyamoto, Y. Kimura and C.W. Lee (2001). Synthesis and Properties of HighMolecular-Weight Poly(L-Lactic Acid) by Melt/Solid Polycondensation under Different Reaction Conditions. High Perform. Polym.13(2). 189 – 196.

S. K. Singh and P. Anthony, (2016). High Molecular Weight Polylactic Acid Synthesized by Applying Different Binary Catalyst. Int. J. Chem. Pharm. Sci. 4(10). 517–521.

S.P. Dubey, H.A. Abhyankar, V. Marchante, J.L. Brighton, K. Blackburn, (2016). Chronological Review of the Catalytic Progress of Polylactic Acid Formation through Ring Opening Polymerisation. Int. Res. J. Pure Appl. Chem. 12(3)., 1–20.

Y. Cheng, S. Deng, P. Chen, R. Ruan, (2009). Polylactic Acid (PLA) Synthesis and Modifications : A review. Front. Chem. China 4. 259–264.

Y. Hu, W.A. Daoud, K.K.L. Cheuk, C.S.K. Lin, (2016). Ring-Opening Polymerisation and Polymer Modification : Focus on Poly(Lactic Acid). Materials 9(3).133.

Y. Srithep, D. Pholharn, T. Akkaprasa, (2019). Effect of Molecular Weight of Poly(L-Lactic Acid) on The Stereocomplex Formation between Enantiomeric Poly(Lactic Acid) Blendings. IOP Conf. Ser. Mater. Sci. Eng. 526 (1). 012024.

Z. Luo, S. Chaemchuen, K. Zhou, A.A. Gonzalez, F. Verpoort, (2017). Influence of Lactic Acid on The Catalytic Performance of MDABCO for Ringopening Polymerisation of L-Lactide. Appl. Catal. A, Gen. 546. 15–21.

Downloads

Published

2021-05-21

How to Cite

Ibrahim, N., & Shamsuddin, A. N. (2021). High molecular weight of polylactic acid (PLA): A Review on the effect of initiator. Malaysian Journal of Chemical Engineering &Amp; Technology, 4(1), 15–23. https://doi.org/10.24191/mjcet.v4i1.12906