Microwave irradiation synthesis of carbon nanotubes: Advances, purification techniques, and scalability prospects

Authors

  • Muhamed Nor Iqmal Hafizi Kamaruddin School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Siti Shawalliah Idris School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Atikah Kadri School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia
  • Noor Fitrah Abu Bakar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v7i2.1971

Keywords:

Carbon nanotubes, Microwave irradiation, Arc discharge, Chemical vapor deposition, Purification, Scalability, Techno-economic assessment

Abstract

Carbon nanotubes (CNTs) has been a subject of extensive research and development due to their exceptional properties. This article provides an overview of CNT production techniques, focusing on conventional methods such as arc discharge and chemical vapor deposition (CVD), as well as the emerging alternative, microwave (MW) irradiation technique. The MW irradiation technique offers a promising alternative with potential advantages in terms of energy efficiency and economical aspect. The article also discusses various purification techniques, mainly categorised into chemical and physical purification, underlining their advantages and challenges. Scalability of these production methods are also extensively discussed to explore the potential for scaling up MW irradiation technique, suggesting new alternative for achieving cost-effective and high-quality CNT production on an industrial scale. This review aims to provide insights into the current state of CNT production advancement and identify future opportunity for research and development in this field.

References

Algadri, N. A., Ibrahim, K., Hassan, Z., & Bououdina, M. (2017). Cost-effective single-step carbon nanotube synthesis using microwave oven. Materials Research Express, 4(8). https://doi.org/10.1088/2053-1591/aa817b

Ando, Y., & Zhao, X. (2006). Synthesis of carbon nanotubes by arc-discharge method. New Diamond and Frontier Carbon Technology, 16(3), 123–137.

Andrews, R., Jacques, D., Qian, D., & Dickey, E. C. (2001). Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39, 1681–1687. https://doi.org/10.1016/S0008-6223(00)00301-8

Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials, 50, 135–150. https://doi.org/10.1016/j.diamond.2014.10.001

Asnawi, M., Azhari, S., Hamidon, M. N., Ismail, I., & Helina, I. (2018). Synthesis of carbon nanomaterials from rice husk via microwave oven. Journal of Nanomaterials, 2018. Article 2898326 https://doi.org/10.1155/2018/2898326

Azodpour, J., & Baniadam, M. (2019). Microwave assisted purification of multi-walled carbon nanotubes by potassium permanganate; effect of acid to oxidant molar ratio and treatment time. Diamond and Related Materials, 98, 107485. https://doi.org/10.1016/j.diamond.2019.107485

Baghel, P., Sakhiya, A. K., & Kaushal, P. (2022). Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications. Heliyon, 8(10), e10943. https://doi.org/10.1016/j.heliyon.2022.e10943

Barahmand, Z., & Eikeland, M. S. (2022). Techno-economic and life cycle cost analysis through the lens of uncertainty: A scoping review. Sustainability, 14(19). https://doi.org/10.3390/su141912191

Boudard, D., Je, A. F., Berhanu, S., Lecompte, J. T. J., & Philippe, D. B. (2015). Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects. Journal of Nanoparticle Research 17, Article 194. https://doi.org/10.1007/s11051-015-2999-0

Bower, C., Zhou, O., Zhu, W., Werder, D. J., & Jin, S. (2000). Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters, 77(17), 2767–2769. https://doi.org/10.1063/1.1319529

Cesar, J., Grifoll, V., Margarita, P., Saiz-santos, M., & Lizundia, E. (2023). Techno-Economic Assessment of Chitin Nanofibrils Isolated from Fungi for a Pilot-Scale Biorefinery. ACS Sustainable Resource Management, 1(1), 42–53. https://doi.org/10.1021/acssusresmgt.3c00030

Chai, S. Y. W., Phang, F. J. F., Yeo, L. S., Ngu, L. H., & How, B. S. (2022). Future era of techno-economic analysis: Insights from review. Frontiers in Sustainability, 3, 924047. https://doi.org/10.3389/frsus.2022.924047

Charon, E., Pinault, M., Mayne-L’Hermite, M., & Reynaud, C. (2021). One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes. Carbon, 173, 758-768. https://doi.org/10.1016/j.carbon.2020.10.056

Chen, C., Chen, M., Peng, Y., Lin, C., Chang, L., & Chen, C. (2005). Microwave digestion and acidic treatment procedures for the purification of multi-walled carbon nanotubes. Diamond and Related Materials, 14(3-7), 798–803. https://doi.org/10.1016/j.diamond.2004.11.022

Chen, J., Shan, J. Y., Tsukada, T., Munekane, F., Kuno, A., Matsuo, M., Hayashi, T., Kim, Y. A., & Endo, M. (2007). The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 45(2), 274–280. https://doi.org/10.1016/j.carbon.2006.09.028

Chen, Y., Li, Z., & Zhao, Y. (2016). Purification and dispersibility of multi-walled carbon nanotubes. Russian Journal of Physical Chemistry A, 90(13), 2619–2624. https://doi.org/10.1134/S0036024416130227

Chng, E. L. K., Poh, H. L., Sofer, Z., & Pumera, M. (2013). Purification of carbon nanotubes by high temperature chlorine gas treatment. Physical Chemistry Chemical Physics, 15(15), 5615–5619. https://doi.org/10.1039/c3cp50348h

Choi, Y. C., Bae, D. J., Lee, Y. H., Lee, B. S., Park, G., Choi, W. B., Sung, N., Kim, J. M., Choi, Y. C., Bae, D. J., Lee, Y. H., Soo, B., & Park, G. (2000). Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. Journal of Vacuum Science & Technology A, 1864, 1864–1868. https://doi.org/10.1116/1.582437

Das, D., & Roy, A. (2020). Synthesis of diameter-controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Applied Surface Science, 515, 146043. https://doi.org/10.1016/j.apsusc.2020.146043

Das, R., Ali, E., Bee, S., Hamid, A., Annuar, M. S. M., & Ramakrishna, S. (2014). Common wet chemical agents for purifying multiwalled carbon nanotubes. Journal of Nanomaterials, 2014. Article 945172. http://dx.doi.org/10.1155/2014/945172

Davis, W. R., Slawson, R. J., & Rigby, G. R. (1953). An unusual form of Carbon. Nature, 171, 756. http://www.ncbi.nlm.nih.gov/pubmed/4834918

De Heer, W. A. (2004). Nanotubes and the Pursuit of Applications. MRS Bulletin, 29. 281–285 https://doi.org/10.1557/mrs2004.81

Desforges, A., Mercier, G., Hérold, C., Gleize, J., Normand, F. Le, & Vigolo, B. (2014). Improvement of carbon nanotube stability by high temperature oxygen/chlorine gas treatment. Carbon, 76, 275–284. https://doi.org/10.1016/j.carbon.2014.04.078

Dikonimos, T., Giorgi, R., Lisi, N., Pilloni, L., Salernitano, E., Sarto, F., & Alvisi, M. (2004). Carbon nanotubes growth by HFCVD : Effect of the process parameters and catalyst preparation. Diamond and Related Materials, 13(2), 305–310. https://doi.org/10.1016/j.diamond.2003.10.013

Druzhinina, T., Weltjens, W., Hoeppener, S., & Schubert, U. S. (2009). The selective heating of iron nanoparticles in a single- mode microwave for the patterned growths of carbon nanofibers and nanotubes. Advanced Functional Materials, 19(8), 1287–1292. https://doi.org/10.1002/adfm.200801720

Duesberg, G. S., Muster, J., Byrne, H. J., Roth, S., & Burghard, M. (1999). Towards processing of carbon nanotubes for technical applications. Applied Physics A: Materials Science and Processing, 69(3), 269–274. https://doi.org/10.1007/s003390051001

Ebbesen, T. w, & Ajayan, P. M. (1992). Large Scale Synthesis of Carbon Nanotubes. Nature, 358, 220–222. https://doi.org/10.1038/358220a0

Fang, L., Sheng, L., An, K., Yu, L., Ren, W., Ando, Y., & Zhao, X. (2013). Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge. Physica E: Low-Dimensional Systems and Nanostructures, 50, 116–121. https://doi.org/10.1016/j.physe.2013.03.005

Gamaly, E. G., & Ebbesen, T. W. (1995). Mechanism of carbon nanotube formation in the arc discharge. Physical Review B, 52(3), 2083–2089. https://doi.org/10.1103/PhysRevB.52.2083

Guo, Z., Zhong, S., Cao, M., Zhong, Z., Xiao, Q., Huang, J., & Chen, J. (2023). High-temperature-annealed multi-walled carbon nanotubes as high-performance conductive agents for LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries. Metals, 13(1), 36. https://doi.org/10.3390/met13010036

Haeldermans, T., Campion, L., Kuppens, T., Vanreppelen, K., Cuypers, A., & Schreurs, S. (2020). A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresource Technology, 318, 124083. https://doi.org/10.1016/j.biortech.2020.124083

Hernadi, K., Siska, A., Thiên-Nga, L., Forró, L., & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics, 141–142, 203–209. https://doi.org/10.1016/S0167-2738(01)00789-5

Hernandez-Tabares, L., Chao-Mujica, F. J., Darias-Gonzalez, J. G., Ledo Pereda, L. M., Antuch, M., Carrillo-Barroso, E., Chong-Quero, J. E., & Desdin-Garcia, L. F. (2024). Review of the design and operation criteria of a DC submerged arc discharge carbon nanostructure synthesis installation. Journal of Nanomaterials, 2024. https://doi.org/10.1155/2024/9949667

Hong, E. H., Lee, K. H., Oh, S. H., & Park, C. G. (2002). In‐situ synthesis of carbon nanotubes on organic polymer substrates at atmospheric pressure. Advanced Materials, 14(9), 676–679. https://doi.org/10.1002/1521-4095(20020503)14:9%3C676::AID-ADMA676%3E3.0.CO;2-3

Hidalgo, P., Navia, R., Hunter, R., Camus, C., Buschmann, A., & Echeverria, A. (2023). Carbon nanotube production from algal biochar using microwave irradiation technology. Journal of Analytical and Applied Pyrolysis, 172, 106017. https://doi.org/10.1016/j.jaap.2023.106017

Hou, P. X., Liu, C., & Cheng, H. M. (2008). Purification of carbon nanotubes. Carbon, 46(15), 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009

Hu, H., Zhao, B., Itkis, M. E., & Haddon, R. C. (2004). Nitric acid purification of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 107(50), 13838-13842. https://doi.org/10.1021/jp035719i

Huang, W., Wang, Y., Luo, G., & Wei, F. (2003). 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon, 41(13), 2585–2590. https://doi.org/10.1016/S0008-6223(03)00330-0

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. https://doi.org/10.1038/354056a0

Ismail, A. F., Goh, P. S., Tee, J. C., Sanip, S. M., & Aziz, M. (2008). A review of purification techniques for carbon nanotubes. Nano, 3(3), 127–143. https://doi.org/10.1142/S1793292008000927

Jahanshahi, M., & Kiadehi, A. D. (2013). Fabrication, purification and characterization of carbon nanotubes: arc-discharge in liquid media (ADLM). Syntheses and Applications of Carbon Nanotubes and Their Composites, 1, 55e76. https://doi.org/10.5772/51116

Jong Lee, S., Koo Baik, H., Yoo, J. eun, & Hoon Han, J. (2002). Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diamond and Related Materials, 11(3–6), 914–917. https://doi.org/10.1016/S0925-9635(01)00639-2

Jorio, A., Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2011). The sp 2 Nanocarbons: Prototypes for Nanoscience and Nanotechnology. Raman Spectroscopy in Graphene Related Systems, 1–15. https://doi.org/10.1002/9783527632695.ch1

Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., & Fischer, J. E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644), 756–758. https://doi.org/10.1038/41972

Khanbolouki, P., & Tehrani, M. (2020). Purification, structural evolutions, and electrical properties of carbon nanotube yarns processed via incandescent annealing. Carbon, 168, 710–718. https://doi.org/10.1016/j.carbon.2020.06.069

Kharissova, O. V. (2004). Vertically aligned carbon nanotubes fabricated by microwaves. Reviews on Advanced Materials Science, 7(1), 50-54.

Kharissova, O. V, Kharisov, B. I., & Ortiz, E. D. C. (2013). Dispersion of carbon nanotubes in water and non-aqueous solvents. Rsc Advances, 3(47), 24812-24852. https://doi.org/10.1039/c3ra43852j

Kumar, M., & Ando, Y. (2014). Chemical vapor deposition of carbon nanotubes : A review on growth mechanism and mass production. Journal of nanoscience and nanotechnology, 10(6), 3739-3758.. https://doi.org/10.1166/jnn.2010.2939

Kure, N., Hamidon, M. N., Azhari, S., Mamat, N. S., Yusoff, H. M., Isa, B. M., & Yunusa, Z. (2017). Simple Microwave-Assisted Synthesis of Carbon Nanotubes Using Polyethylene as Carbon Precursor. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/2474267

Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, 274(5293), 1701–1703. https://doi.org/10.1126/science.274.5293.1701

Liu, J., Jiang, Z., Yu, H., & Tang, T. (2011). Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process. Polymer Degradation and Stability, 96(10), 1711–1719. https://doi.org/10.1016/j.polymdegradstab.2011.08.008

Liu, Y., Guo, N., Yin, P., & Zhang, C. (2019). Facile growth of carbon nanotubes using microwave ovens: The emerging application of highly efficient domestic plasma reactors. Nanoscale Advances, 1(12), 4546–4559. https://doi.org/10.1039/c9na00538b

Lu, K. L., Lago, R. M., Chen, Y. K., Green, M. L. H., Harris, P. J. ., & Tsang, S. C. (1996). Mechanical damage of carbon nanotubes by ultrasound. Carbon, 34(6), 814–816. https://doi.org/10.1016/0008-6223(96)89470-X

Lv, X., Du, F., Ma, Y., Wu, Q., & Chen, Y. (2005). Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds. Carbon, 43(9), 2020–2022. https://doi.org/10.1016/j.carbon.2005.02.042

Mirershadi, S., Mortazavi, S. Z., Reyhani, A., Moniri, N., & Novinrooz, A. J. (2009). Effective Condition for Purification of Multi-walled Carbon Nanotubes by Nitric Acid. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 39(6), 312–316. https://doi.org/10.1080/15533170903094840

Mubarak, N. M., Abdullah, E. C., Jayakumar, N. S., & Sahu, J. N. (2014). An overview on methods for the production of carbon nanotubes. Journal of Industrial and Engineering Chemistry, 20(4), 1186–1197. https://doi.org/10.1016/j.jiec.2013.09.001

Mubarak, N. M., Yusof, F., & Alkhatib, M. F. (2011). The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chemical Engineering Journal, 168(1), 461–469. https://doi.org/10.1016/j.cej.2011.01.045

Neha, S., Prasanna Kumar Ramesh, K., & Remya, N. (2022). Techno-economic analysis and life cycle assessment of microwave co-pyrolysis of food waste and low-density polyethylene. Sustainable Energy Technologies and Assessments, 52(Part D). Article 102356. https://doi.org/10.1016/j.seta.2022.102356

Nie, H., Cui, M., & Russell, T. P. (2013). A route to rapid carbon nanotube growth. Chemical Communications, 49(45), 5159–5161. https://doi.org/10.1039/c3cc41746h

Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., & Smalley, R. E. (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical physics letters, 313(1-2), 91-97. https://doi.org/10.1016/S0009-2614(99)01029-5

Noda, S., Hasegawa, K., Sugime, H., & Kakehi, K. (2007). Millimeter-Thick Single-Walled Carbon Nanotube Forests : Hidden Role of Catalyst Support. Japanese Journal of Applied Physics, 46(5L), L399. https://doi.org/10.1143/JJAP.46.L399

Nurdiana, A., Astuti, L., Dewi, R. P., Ragadhita, R., Bayu, A., & Nandiyanto, D. (2022). Techno-economic Analysis on the Production of Zinc Sulfide Nanoparticles by Microwave Irradiation Method.

ASEAN Journal of Science and Engineering, 2(2), 143-156. https://doi.org/10.17509/ajse.v2i2.37791

Park, J. H., Park, J., Lee, S.-H., & Kim, S. M. (2020). Continuous synthesis of high-crystalline carbon nanotubes by controlling the configuration of the injection part in the floating catalyst chemical vapor deposition process. Carbon Letters, 30(2020), 613–619. https://doi.org/10.1007/s42823-020-00131-3

Park, T. J., Banerjee, S., Hemraj-Benny, T., & Wong, S. S. (2006). Purification strategies and purity visualization techniques for single-walled carbon nanotubes. Journal of Materials Chemistry, 16(2), 141–154. https://doi.org/10.1039/b510858f

Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D. C., Bae, D. J., An, K. H., Lim, S. C., Zhu, X. Y., & Lee, Y. H. (2001). High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 39(5), 655–661. https://doi.org/10.1016/S0008-6223(00)00152-4

Patel, A. D., Meesters, K., Uil, H. den, Jong, E. de, Bloka, K., & Patel, M. K. (2012). Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy & Environmental Science, 5(9), 8430-8444. https://doi.org/10.1039/c2ee21581k

Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, 1085-1097. https://doi.org/10.1016/j.jclepro.2016.06.164

Polizu, S., Savadogo, O., Poulin, P., & Yahia, L. (2006). Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. Journal of Nanoscience and Nanotechnology, 6(7), 1883–1904. https://doi.org/10.1166/jnn.2006.197

Radushkevich, L. V., & Lukyanovich, V. M. (1952). The Structure of Carbon Forming in Thermal Decomposition of Carbon Monoxide on an Iron Catalyst. Russian Journal of Physical Chemistry, 26, 88–95.

Rafique, M. M. A., & Iqbal, J. (2011). Production of carbon nanotubes by different routes-a review. Journal of Encapsulation and Adsorption Sciences, 1(02), 29–34. https://doi.org/10.4236/jeas.2011.11004

Ragadhita, R., Bayu, A., Nandiyanto, D., Maulana, A. C., Oktiani, R., Sukmafitri, A., Machmud, A., & Surachman, E. K. A. (2019). Techo-economic analysis for the production of titanium dioxide nanoparticle produced by liquid-phase synthesis method. Journal of Engineering Science and Technology, 14(3), 1639-1652.

Rahatwan, I. D., Wulan, P. P. D. K., & Solahudin, M. (2020). Techno-economic analysis of pilot scale carbon nanotube production from LPG with Fe-Co-Mo/MgO catalyst in Indonesia. AIP Conference Proceedings, 2230(1). https://doi.org/10.1063/5.0002357

Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B, 268, 115095. https://doi.org/10.1016/j.mseb.2021.115095

Resasco, D. E., Herrera, J. E., & Kitiyanan, B. (2002). A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst. Journal of Nanoparticle Research 4, 131–136. https://doi.org/10.1023/A:1020174126542

Reyhani, A., Mortazavi, S. Z., Golikand, A. N., Moshfegh, A. Z., & Mirershadi, S. (2008). The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. Journal of Power Sources, 183(2), 539–543. https://doi.org/10.1016/j.jpowsour.2008.05.039

Ribeiro, H., Cristina, M., Marcos, W., & Santos, A. P. (2021). Purification of carbon nanotubes produced by the electric arc-discharge method. Surfaces and Interfaces, 26, 101389. https://doi.org/10.1016/j.surfin.2021.101389

Roch, A., Jost, O., Schultrich, B., & Beyer, E. (2007). High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique. Physica Status Solidi (B) Basic Research, 244(11), 3907–3910. https://doi.org/10.1002/pssb.200776135

Saravanan, M. S. S., Babu, S. P. K., Sivaprasad, K., & Jagannatham, M. (2010). Techno-economics of carbon nanotubes produced by open air arc discharge method. International Journal of Engineering, Science and Technology, 2(5), 100-108. https://doi.org/10.4314/ijest.v2i5.60128

Sakhapov, S. Z., Andryushchenko, V. A., Boyko, E. V., Skirda, M. S., & Smovzh, D. V. (2022). Experimental and theoretical study of the conditions for the formation of carbon nanostructures in an arc discharge in helium, argon, and nitrogen. Letters on Materials, 12(4), 321-326. https://doi.org/10.22226/2410-3535-2022-4-321-326

Saucedo-Jimenez, D., Medina-Sánchez, I., Padilla-Pérez, D. A., Couder-Castañeda, C., & Luna Sanchez, J. L. (2023). Double-walled carbon nanotubes synthesis by pulsed electric arc discharge with spinning anode. 23 October 2023, Preprint (version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3466715/v1

Sengupta, J. (2018). Carbon nanotube fabrication at industrial scale: Opportunities and challenges. In Handbook of Nanomaterials for Industrial Applications (Issue August 2019). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813351-4.00010-9

Singh, P., Sharma, S., Dixit, V., Chaubey, K. K., Sharma, S., Aggrawal, K., Nagrami, F. ul H., Kumari, P., & Tripathi, V. L. (2024). Synthesis, characterization, and applications of carbon nanotube. In Carbon-Based Nanomaterials: Synthesis, Agricultural, Biomedical, and Environmental Interventions (pp. 35-58). Singapore, Springer Nature. Suri, A., & Coleman, K. S. (2011). The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes. Carbon, 49(9), 3031–3038. https://doi.org/10.1016/j.carbon.2011.03.023

Suzuki, T., Guo, Y., Inoue, S., Zhao, X., Ohkohchi, M., & Ando, Y. (2006). Multiwalled carbon nanotubes mass-produced by dc arc discharge in He-H 2 gas mixture. Journal of Nanoparticle Research, 8(2), 279–285. https://doi.org/10.1007/S11051-005-9004-2/METRICS

Towler, G., & Sinnott, R. (2013). Chemical Engineering Design (Second). https://www.eia.gov

Turton, R. (2012). Analysis, synthesis, and design of chemical processes. Prentice Hall.

Vivas-Castro, J., Rueda-Morales, G., Ortega-Cervantez, G., Ortiz-López, J., Moreno-Ruiz, L., & Ortega-Avilés, M. (2011). Synthesis of carbon nanostructures by microwave irradiation. In S. Yellampalli (Ed.). Carbon Nanotubes—Synthesis, Characterization, Applications (pp. 47-60). https://doi.org/10.5772/17722

Yang, K., Yi, Z., Jing, Q., Yue, R., Jiang, W., & Lin, D. (2013). Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Chinese science bulletin, 58, 2082–2090. https://doi.org/10.1007/s11434-013-5697-2

Yousef, S., Khattab, A., Osman, T. A., & Zaki, M. (2013). Effects of increasing electrodes on CNTs yield synthesized by using arc-discharge technique. Journal of Nanomaterials, 2013(1), 1-9, 392126.. https://doi.org/10.1155/2013/392126

Yu, A., Bekyarova, E., Itkis, M. E., Fakhrutdinov, D., Webster, R., & Haddon, R. C. (2006). Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. Journal of the American Chemical Society, 128(30), 9902-9908. https://doi.org/10.1021/ja062041m

Zhan, M., Pan, G., Wang, Y., Kuang, T., & Zhou, F. (2017). Ultrafast carbon nanotube growth by microwave irradiation. Diamond and Related Materials, 77, 65–71. https://doi.org/10.1016/j.diamond.2017.06.001

Zhou, G., Wu, H., Deng, Y., Miao, R., Lai, D., Deng, J., Zhang, J., Chen, Q., Shao, Q., & Shao, C. (2024). Synthesis of high-quality multi-walled carbon nanotubes by arc discharge in nitrogen atmosphere. Vacuum, 225, 113198. https://doi.org/10.1016/j.vacuum.2024.113198

Downloads

Published

2024-10-31

How to Cite

Kamaruddin, M. N. I. H., Idris, S. S., Kadri, A. ., & Abu Bakar, N. F. (2024). Microwave irradiation synthesis of carbon nanotubes: Advances, purification techniques, and scalability prospects. Malaysian Journal of Chemical Engineering &Amp; Technology, 7(2), 270–298. https://doi.org/10.24191/mjcet.v7i2.1971