Review on landfill gas formation from leachate biodegradation

Authors

  • Nur Shuhadah Japperi School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Zharif Zainulazfar Mohd Asri School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Wan Zairani Wan Bakar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • 'Aqilah Dollah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Mohd Fazril Irfan Ahmad Fuad School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Siti Nurliyana Che Mohamed Hussein School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v4i1.12719

Keywords:

Anaerobic Digestion, Landfill Leachate, Landfill Gas, Microbial Community, Methane Gas

Abstract

Landfill waste management is a very crucial procedure in handling Municipal Solid Waste (MSW) because it may create significant environmental issues if it is not managed properly. Landfill leachate and landfill gas (LFG) is part of the landfill waste management which triggered lot of researchers especially in terms of the environmental implications associated with the movement of the gasses during the waste constituents’ processes. Hence, this paper review is aiming to understand the behaviour of leachate itself as a decomposition agent in producing landfill gas (biogas). Biogas is naturally produced by anaerobic bacteria through anaerobic digestion which is affected by operating parameters and substrate characteristic. The results indicate that temperature, pH, and C/N ratio of leachate are the important factors that could increase the production of biogas with high content of methane. Furthermore, in terms of microbial activity during anaerobic digestion process, hydrogenotrophic and acetoclastic methanogen are the dominant substrate that contribute in producing methane gas as the final product. Firmicutes and Bacteroidetes are the common fermentative bacteria that had been found during fermentation process in hydrolysis and acidogenic phases. While, methanobacterial, methanococcal, methanomicrobial, methanosarcinal, and methanopyral are being classified as orders among 65 types of methanogenic archaea during methanogenesis stage. Overall, the relationships between operating parameters and microbial structure are important aspects that need to be considered in order to optimize the production of methane gas. 

References

A. Alexander, C. Burklin, and A. Singleton, (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. no. May, p. 56, 2005, [Online]. https://www3.epa.gov/ttn/catc/dir1/landgem-v302-guide.pdf.

A. Fernandes, M. J. Pacheco, L. Ciríaco, and A. Lopes, (2015). Review on the Electrochemical Processes for the Treatment of Sanitary Landfill Leachates: Present and Future. Appl. Catal. B Environ. 176–177,183–200.

B. Jayanthi, C. U. Emenike, P. Agamuthu, K. Simarani, S. Mohamad, and S. H. Fauziah, (2016). Selected Microbial Diversity of Contaminated Landfill Soil of Peninsular Malaysia and the Behavior Towards Heavy Metal Exposure. Catena, 147. 25–31.

B. P. Naveen, D. M. Mahapatra, T. G. Sitharam, P. V. Sivapullaiah, and T. V. Ramachandra, (2017). Physico-chemical and Biological Characterization of Urban Municipal Landfill Leachate. Environ. Pollut., 220. 1–12.

B. Wang, X. Shen, S. Chen, Y. Bai, G. Yang, J. Zhu, J. Shu, Z. Xue, (2018). Distribution Characteristics, Resource Utilization and Popularizing Demonstration of Crop Straw in Southwest China: a Comprehensive Evaluation. Ecol. Indic. 93. no. January, 998–1004.

C. Liu, D. Sun, Z. Zhao, Y. Dang, and D. E. Holmes, (2019). Methanothrix Enhances Biogas Upgrading in Microbial Electrolysis Cell via Direct Electron Transfer. Bioresour. Technol.291. 121877.

D. Donneys-Victoria, N. Marriaga-Cabrales, R. J. Camargo-Amado, F. Machuca-Martínez, J. M. Peralta-Hernández, and C. A. Martínez-Huitle, (2018). Treatment of Landfill Leachate by a Combined Process: Iron Electrodissolution, Iron Oxidation by H2O2 and Chemical Flocculation. Sustain. Environ. Res. 28 (1). 12–19.

E. Hepburn, A. Northway, D. Bekele, and M. Currell, (2019). Incorporating Perfluoroalkyl Acids (PFAA) into a Geochemical Index for Improved Delineation of Legacy Landfill Impacts on Groundwater. Sci. Total Environ. 666. 1198–1208.

E. Olisa, N. Sapari, A. Malakahmad, K. Uka Orji, and A. Ali Riahi, (2015). Methane Recovery Technologies from Landfills for Energy Generation and Leachate Reduction-an Overview. Res. J. Appl. Sci. Eng. Technol. 11(4) 378–387.

F. Ghanbari, J. Wu, M. Khatebasreh, D. Ding, and K. Y. A. Lin, (2020). Efficient Treatment for Landfill Leachate through Sequential Electrocoagulation, Electrooxidation And PMS/UV/CuFe2O4 process. Sep. Purif. Technol. 242. 116828.

F. G. Pohland and S. R. Harper, (1985). Critical Review and Summary of Leachate and Gas Production from Landfills. Natl. Serv. Cent. Environ. Publ., 182.

G. Letinga, J. Field, J. van Lier, G. Zeeman, and L. W. H. Pol, (1997). Advance Anaerobic Wastewater Treatment In The Near Future. Dep. Environ. Technol. Wageningen, Agric. Univ., vol. 66, pp. 37–39.

H. Kamalan, (2015). Utilizing Methane Generated in Anaerobic Leachate Treatment as Renewable Energy. J. Clean Energy Technol. 3(6). 433–437.

H. L. Drake, A. S. Gößner, and S. L. Daniel, (2008). Old Acetogens, New Light. Ann. N. Y. Acad. Sci.11.

H. Pasalari, M. Gholami, A. Rezaee, A. Esrafili, and M. Farzadkia, (2020). Perspectives on microbial Community in Anaerobic Digestion with Emphasis on Environmental Parameters: A Systematic Review. Chemosphere. 25. 100–128.

I. Angelidaki, L. Treu, P. Tsapekos, G. Luo, S. Campanaro, H. Wenzel, P. G. Kougias, (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv., vol. 36, no. 2, pp. 452–466.

M. A. Tadda, A. Ahsan, M. M. Maina, M. N. Yahya, and A. I. Muhammad, (2016). Low Cost Leachate Treatment Technology Using Electrolysis and Activated Carbon. in 37 th ANNUAL CONFERENCE AND ANNUAL GENERAL MEETING, pp. 464–471.

M. Rasapoor, B. Young, R. Brar, and S. Baroutian, (2020). Improving Biogas Generation from Aged Landfill Waste using Moisture Adjustment and Neutral Red Additive – Case study: Hampton Downs’s Landfill Site,” Energy Convers. Manag. 216. 112947, 2020.

M. Laiq Ur Rehman, A. Iqbal, C. C. Chang, W. Li, and M. Ju, (2019). Anaerobic digestion. Water Environ. Res. 91(10). 1253–1271.

M. Hussein, K. Yoneda, Z. M. Zaki, N. A. Othman, and A. Amir, (2019). Leachate Characterizations and Pollution Indices of Active and Closed Unlined Landfills in Malaysia. Environ. Nanotechnology, Monit. Manag. 12. 100232.

M. Noraini, S. N. A. Sanusi, O. S. J. Elham, M. Z. Sukor, and K. H. Ku Hamid, (2017). Factors Affecting Production of Biogas From Organic Solid Waste Via Anaerobic Digestion Process : A Review. Solid State Sci. Technol., 25. 28–39.

M. Usman and B. Kiaer, (2020). Bioresource Technology Improving the Biogas Yield of Manure : Effect of Pretreatment on Anaerobic Digestion of the Recalcitrant Fraction of Manure. Bioresour. Technol. 321. 124427.

M. Westerholm and A. Schnürer, (2019). Microbial Responses to Different Operating Practices for Biogas Production Systems. Dep. Mol. Sci. Swedish Univ. Agric. Sci. Uppsala, Sweden, p. 37, 2019, [Online]. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.

N. Dussadee, Y. Unpaprom, and R. Ramaraj, (2016). Grass Silage for Biogas Production. Adv. Silage Prod. Util.1–22.

N. F. D. Mat Salleh and K. H. Ku Hamid, (2013). Leachate Characterization From a Closed Landfill in Air. Malaysian J. Anal. Sci. 17(1). 24–29.

P. Agumuthu, C. Simon, and S. H. Fauziah, (2004). Municipal Solid Waste Management in Malaysia - Possibility of Improvement?. Malaysian J. Sci.23(2).

P. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen, (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 32(4). 297–336.

S. W. Ragsdale and E. Pierce, (2008). Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation. Biochim. Biophys. Acta - Proteins Proteomics. 1784(12). 1873–1898.

S. Wang, G. L. Hawkins, B. H. Kiepper, and K. C. Das, (2018). Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renew. Energy.126. 552–562.

T. Sara, (2017). Fact Sheet - Biogas: Converting Waste to Energy. [Online]. https://www.eesi.org/papers/view/fact-sheet-biogasconverting-waste-to-energy.

V. S. Varma, C. Mayur, and A. Kalamdhad, (2014). Effects of Bulking Agent In Composting Of Vegetable Waste and Leachate Control using Rotary Drum Composter. Sustain. Environ. Res. 24(4). 245–256

X. Luo, X. Yuan, S. Wang, F. Sun, Z. Hou, Q. Hu, L. Zhai, Z. Cui, Y. Zou, (2018). Methane Production and Characteristics of the Microbial Community in the Co-Digestion Of Spent Mushroom Substrate with Dairy Manure. Bioresour. Technol. 250. 611–620.

X. Wang, X. Lu, F. Li, and G. Yang, (2014). Effects of Temperature and Carbon-Nitrogen (C/N) ratio on the Performance of Aanaerobic Co-digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS One. 9(5). 1–7.

Z. A. Milad, (2014). An Experimental Investigation of Landfill Leachate Impact on Surrounding Soil. An Exp. Investig. Landfill Leachate Impact Surround. Soil, no. June, pp. 01–191.

Z. J. Yong, M. J. K. Bashir, C. A. Ng, S. Sethupathi, J. W. Lim, P. L. Show, (2019). Sustainable Waste-to-Energy Development in Malaysia: Appraisal of Environmental, Financial, and Public Issues Related with Energy Recovery from Municipal Solid Waste. Green Technologies: Bridging Conventional Practices and Industry 4.0. 7 (10). 676.

Z. Zhang, Y. Li, W. Zhang, J. Wang, M. R. Soltanian, and A. G. Olabi, (2018). Effectiveness of Amino Acid Salt in Capturing CO2: A review. Renew. Sustain. Energy Rev. 98. 179–188.

Downloads

Published

2021-05-21

How to Cite

Japperi, N. S., Mohd Asri, Z. Z., Wan Bakar, W. Z., Dollah, ’Aqilah, Ahmad Fuad, M. F. I., & Che Mohamed Hussein, S. N. (2021). Review on landfill gas formation from leachate biodegradation. Malaysian Journal of Chemical Engineering &Amp; Technology, 4(1), 39–49. https://doi.org/10.24191/mjcet.v4i1.12719