A mini-review on biosurfactants from natural-based resources: Sources, production, and application in oil industries

Authors

  • Mohammed Falalu Hamza School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
  • Lukman Ismail Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kampus Jeli, 17600 Jeli, Kelantan, Malaysia
  • Yarima Mudassir Hassan Faculty of Computing and Sciences, Azman University Kano, Nigeria
  • Surajuddeen Sikiru School of Physics & Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Hassan Soleimani Institute of Hydrocarbon Recovery, Universiti Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
  • Saifullahi Shehu Imam Department of Pure & Industrial Chemistry, Bayero University Kano, 3011 Kano, Nigeria

DOI:

https://doi.org/10.24191/mjcet.v7i1.592

Keywords:

Biosurfactant, sustainable, EOR, Oil & Gas

Abstract

Increasing energy demand and depletion of producing wells around the globe necessitate oil industries to seek alternative mechanisms to increase oil production. Among various chemical enhanced oil recovery (CEOR) unveiled today, surfactants have become indispensable chemical agents in oil industries because of their wide applications in both onshore and offshore operational activities. Unfortunately, considerable numbers of these surfactants are synthetic causing treatment and disposal of effluents uneconomical to oil industries. This arises due to strong legislation laws enforced by governing bodies to ensure cleaner and safer environments. Consequently, the search for biodegradable surfactants from natural-based resources has revolved around the oil industries aimed at reducing the impacts of synthetic products both environmentally and economically. Plants are widely recognised as natural resources to obtain biosurfactants from their naturally producing saponins. In addition, other chemical compounds derived directly from plant parts are converted to biosurfactants commonly referred to as green biosurfactants. However, researchers have expressed reservations about sustainable biosurfactant production from plants due to limited access to plant resources. The present review discusses the types, properties, sources, synthesis, and applications of biosurfactants in EOR. Furthermore, the paper presents prospects of biosurfactants in EOR and proposes a sustainable production mechanism.

References

Aarra, M., Skauge, A., & Martinsen, H. (2002, September 29–October 2). FAWAG: A breakthrough for EOR in the North Sea [Paper presentation]. Society of Petroleum Engineers (SPE) 2002 EOR Annual Technical Conference and Exhibition, San Antonio, Texas, USA. https://doi.org/10.2118/77695-MS

Abacha, Y., Sanderson, P., & Rahman, P. K. (2016). Microbial process development for fermentation-based biosurfactant production. In V.K. Gupta, G.D. Sharma, M.G. Tuohy, R. Gaur (Eds.), The handbook of microbial bioresources (pp. 456–466). CABI. https://doi.org/10.1079/9781780645216.0456

Adam, A. A., Ojur Dennis, J., Al-Hadeethi, Y., Mkawi, E.M., Abdulkadir, B. A., Usman, F., Hassan, Y.M., Wadi, I. A., & Sani, M. (2020). State of the art and new directions on electrospun lignin/cellulose nanofibers for supercapacitor application: A systematic literature review. Polymers, 12, 2884, https://www.mdpi.com/2073-4360/12/12/2884

Ahmadi, Y., Eshraghi, S. E., Bahrami, P., Hasanbeygi, M., Kazemzadeh, Y., & Vahedian, A. (2015). Comprehensive Water–Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests. Journal of Petroleum Science and Engineering, 133, 123–129. https://doi.org/10.1016/j.petrol.2015.05.003

Ahmed, A. A., Saaid, I. M., Ahmed, A., Hamza, M. F., Umar, A. A., & Aini, S. Q. (2018, April 23–26). Experimental investigation on co-polymer grafted bentonite for controlling reservoir conformance [Paper presentation]. Society of Petroleum Engineers (SPE) Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia. https://doi.org/10.2118/192384-MS

Akpinar, M., & Urek, R. O. (2012). Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Preparative Biochemistry & Biotechnology, 42(6), 582–597. https://doi.org/10.1080/10826068.2012.673528

Alwadani, N., & Fatehi, P. (2018). Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resources Conversion, 1(2), 126–138. https://doi.org/10.1016/j.crcon.2018.07.006

Amanat, N., Barbati, B., Rossi, M. M., Bellagamba, M., Buccolini, M. Galantini, L. & Marco, P. P. (2022). Synthetic and natural surfactants for potential application in mobilization of organic contaminants: characterization and batch study. Water, 14(8), 1182. https://doi.org/10.3390/w14081182

Arab, D., Bryant, S. L., Torsæter, O., Englezos, P., Gopaluni, B., & Kantzas, A. (2022). Elucidation of the mechanistic aspects of chemical EOR in viscous oil systems. Journal of Petroleum Science and Engineering, 216, 110846. https://doi.org/10.1016/j.petrol.2022.110846

Azam, M. R. Tan, I. M., Ismail, L., Mushtaq, M., Nadeem, M., & Sagir, M., (2013). Static adsorption of anionic surfactant onto crushed Berea sandstone. Journal of Petroleum Exploration and Production Technology, 3, 195–201, 2013. https://doi.org/10.1007/s13202-013-0057-y

Bachari, Z., Isari, A. A., Mahmoudi, H., Moradi, S., & Mahvelati, E. H. (2019). Application of natural surfactants for enhanced oil recovery–Critical review. IOP Conference Series: Earth and Environmental Science, 221, 012039. https://doi.org/10.1088/1755-1315/221/1/012039

Bello, A., Ivanova, A., & Cheremisin, A. (2022). Enhancing N2 and CO2 foam stability by surfactants and nanoparticles at high temperature and various salinities. Journal of Petroleum Science and Engineering, 215 Part B, 110720. https://doi.org/10.1016/j.petrol.2022.110720

Beteta, A., Sorbie, K. S., & Skauge, A. (2022). Immiscible viscous fingering: The simulation of tertiary polymer displacements of viscous oils in 2D slab floods. Polymers, 14(1), 4159. https://doi.org/10.3390/polym14194159

Bhardwaj, A., & Hartland, S. (1993). Applications of surfactants in petroleum industry. Journal of Dispersion Science and Technology, 14, 87–116. https://doi.org/10.1080/01932699308943389

Bhardwaj, G., Cameotra, S. S., & Chopra, H. K. (2013). Utilization of oleo-chemical industry by-products for biosurfactant production. AMB Express, 3, 68, 2013/11/21 2013. https://doi.org/10.1186/2191-0855-3-68

Bhatia, S & Sharma, K. (2015). Plant tissue culture-based industries. In S. Bhatia, K. Sharma, R. Dahiya, T. Bera (Eds.) Modern applications of plant biotechnology in pharmaceutical sciences

(pp. 4015–417). Academic Press Cambridge. https://doi.org/10.1016/B978-0-12-802221-4.00014-5

Campos, J. M., Stamford, T. L., Sarubbo, L. A. de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29(5), 1097–108. https://doi.org/10.1002/btpr.1796

Choi, J.-W., Choi, H.-G., Lee, & W.-H. (1996). Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG-1. Journal of Biotechnology, 45(3), 217–225. https://doi.org/10.1016/0168-1656(95)00175-1

Cortés, H., Hernández-Parra, H., Bernal-Chávez, S. A., Prado-Audelo, M. L. D., Caballero-Florán, I. H., Borbolla-Jiménez, F. V., Maykel, G-T., Magana, J.J., & Gerardo L-G. (2021). Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials, 14(12). 3197. https://doi.org/10.3390/ma14123197

Costa, J. A. V., Treichel, H., Santos, L. O., & Martins, V. G. (2018). Chapter 16 – Solid-state fermentation for the production of biosurfactants and their applications In A. Pandey, C. Larroche, & C. R. Soccol (Eds.). Current developments in biotechnology and bioengineering (pp. 357–372). Elsevier. https://doi.org/10.1016/B978-0-444-63990-5.00016-5

Crouzet, J., Arguelles-Arias, A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., & Hoff, G. (2020). Biosurfactants in plant protection against diseases: Rhamnolipids and lipopeptides case study," Frontiers in Bioengineering and Biotechnology, 8, 1014. https://doi.org/10.3389/fbioe.2020.01014

Ebadipour, N., Lotfabad, T. B., Yaghmaei, S., & RoostaAzad, R. (2016). Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology. Preparative Biochemistry & Biotechnology, 46(1), 30–38, https://doi.org/10.1080/10826068.2014.979204

Galdino Ribeiro, B., Monteiro Dos Santos, M., Amaro da Silva, I., Morais Meira, H., Oliveira De Medeiros, A., Medeiros Campos Guerra, J., & Asfora Sarubbo, L. (2020). Study of the biosurfactant production by Saccharomyces cerevisiae URM 6670 using agroindustrial waste. Chemical Engineering Transactions, 79, 61–66. https://doi.org/10.3303/CET2079011

Ganie, K., Manan, M. A., Ibrahim, A., & Idris, A. K. (2019). An experimental approach to formulate lignin-based surfactant for enhanced oil recovery. International Journal of Chemical Engineering, 2019, 4120859. https://doi.org/10.1155/2019/4120859

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J.-S., Yang, H. Ng., Wong, J.W.C., & Sang, H.K. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource Technology, 343, 126059. https://doi.org/10.1016/j.biortech.2021.126059

Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A.S. (2019). An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 9, 171–202. https://doi.org/10.1007/s40089-019-0272-8

Gonçalves, R. A., Holmberg, K., & Lindman, B. (2023). Cationic surfactants: A review. Journal of Molecular Liquids, 375, 121335. https://doi.org/10.1016/j.molliq.2023.121335

Hamza, M. F., Shaik, S., & Moodley, R. (2016). Phytochemical, elemental, and biotechnological study of Cryptocarya latifolia. African Journal of Traditional, Complementary, and Alternative Medicines, 13(4), 74–80. https://doi.org/10.21010/ajtcam.v13i4.11

Hamza, M. F., Sinnathambi, C. M., & Merican, Z. M. A. (2017). Recent advancement of hybrid materials used in chemical enhanced oil recovery (CEOR): A review. IOP Conference Series: Materials Science and Engineering, 206(1), 012007. https://doi.org/10.1088/1757-899X/206/1/012007

Hamza, M. F., Sinnathambi, C. M., Merican, Z. M. A., Soleimani, H., & Stephen, K. D. (2018a). Effect of SiO2 on the foamability, thermal stability and interfacial tension of a novel nano-fluid hybrid surfactant. International Journal of Advanced and Applied Sciences, 5(1), 113–122. https://doi.org/10.21833/ijaas.2018.01.015

Hamza, M. F., Sinnathambi, C. M., Merican, Z. M. A., & Stephen, K. D. (2018b). Laboratory characterization of crude oil and sandstone reservoir for chemical enhanced oil recovery. World Journal of Engineering, 15(3), 354–361. https://doi.org/10.1108/WJE-08-2017-0219

Hamza, M.F, Soleimani, H., Merican, Z., Sinnathambi, C., & Stephen, K. D. (2018c). One-pot synthesis and static bulk foam studies of C18-conjugated Zwitterionic surfactant. Journal of Physics: Conference Series, 1123, 012063. https://doi.org/10.1088/1742-6596/1123/1/012063

Hassan, Y. M., Guan, B. H., Zaid, H. M., Hamza, M. F., Adil, M., Adam, A. A., & Kurnia H. (2021). Application of magnetic and dielectric nanofluids for electromagnetic-assistance enhanced oil recovery: A review. Crystals, 11(2), 106. https://doi.org/10.3390/cryst11020106

Hassan, Y. M., Guan, B. H., Chuan, L. K., Halilu, A., Adil, M., Adam, A. A. & Abdulkadir, B. A. (2022a). Interfacial tension and wettability of hybridized ZnOFe2O3/SiO2 based nanofluid under electromagnetic field inducement. Journal of Petroleum Science and Engineering, 211, 110184. https://doi.org/10.1016/j.petrol.2022.110184

Hassan, Y. M., Guan, B. H., Chuan, L. K., Sikiru, S., Adam, A. A., & Abdulkadir, B. A. (2022b). Interfacial tension of brine-oil interface using Fe2O3, ZnO, and SiO2 nanoparticles endorsed by electromagnetic waves. Chemical Thermodynamics and Thermal Analysis, 8, 100083. https://doi.org/10.1016/j.ctta.2022.100083

Hassan, Y. M., Guan, B. H., Chuan, L. K., Hamza, M. F., Adil, M., & Adam, A. A. (2022c). The synergistic effect of Fe2O3/SiO2 nanoparticles concentration on rheology, wettability, and brine-oil interfacial tension. Journal of Petroleum Science and Engineering, 210, 110059. https://doi.org/10.1016/j.petrol.2021.110059

Hassan, Y. M., Guan, B. H., Chuan, L. K., Hamza, M. F., Khandaker, M. U., Sikiru, S., Adam, A. A. Abdulkadir, B. A., & Saba A. (2022d). The influence of ZnO/SiO2 nanocomposite concentration on rheology, interfacial tension, and wettability for enhanced oil recovery, Chemical Engineering Research and Design, 179, 452–461. https://doi.org/10.1016/j.cherd.2022.01.033

Hassan, Y. M., Guan, B. H., Chuan, Sikiru, S., Hamza, M. F., Halilu, A., Adam, A. A., Abdulkadir, B. A., & Saba A. (2022e). Stability and viscosity of zinc oxide–silicon dioxide nanocomposite in synthetic seawater supported by surfactant for enhanced oil recovery. Nano-Structures & Nano-Objects, 31, 100902. https://doi.org/10.1016/j.nanoso.2022.100902

Hassan, Y. M., Guan, B. H., Chuan, L. K., Khandaker, M. U., Sikiru, S., Halilu, A., Adam, A. A., Abdulkadir, B. A., & Usman F. (2022f). Electromagnetically modified wettability and interfacial tension of hybrid ZnO/SiO2 nanofluids. Crystals, 12(2), 169. https://doi.org/10.3390/cryst12020169

Hassan, Y. M., Guan, B. H., Zaid, H. M., Hamza, M. F., Adam, A. A., Siti, F.A., Abdulkadir, B. A., & Saba, A. (2022g). Effect of annealing temperature on the rheological property of ZnO/SiO2 nanocomposites for enhanced oil recovery. Materials Today: Proceedings, 48 Part 4, 905–910. https://doi.org/10.1016/j.matpr.2021.03.287

Hassan, Y. M., Guan, B. H., Chuan, L. K., Hamza, M. F., & Sikiru, S. (2023). Effect of silica-based hybrid nano-surfactant on interfacial tension reduction for enhanced oil recovery. Chemical Engineering Research and Design, 195, 370–377. https://doi.org/10.1016/j.cherd.2023.05.050

Jezard, A. (2017, October 16). Fossil fuels will still dominate energy in 20 years despite green power rising. World Economic Forum. https://www.weforum.org/agenda/2017/10/fossil-fuels-will-dominate-energy-in-2040

Kalia, A. (2018). Chapter 12-Nanotechnology in bioengineering: transmogrifying plant biotechnology. In D. Barh & V. Azevedo (Eds.), Omics technologies and bioengineering (pp. 211–229). Academic Press. https://doi.org/10.1016/B978-0-12-815870-8.00012-7

Kargozarfard, Z., Riazi, M., & Ayatollahi, S. (2019). Viscous fingering and its effect on areal sweep efficiency during waterflooding: an experimental study. Petroleum Science, 16, 105–116. https://doi.org/10.1007/s12182-018-0258-6

Liang, T., Zhao, X., Yuan, S., Zhu, J., Liang, X., Li, X., & Fujian Z. (2021). Surfactant-EOR in tight oil reservoirs: Current status and a systematic surfactant screening method with field experiments. Journal of Petroleum Science and Engineering, 196, 108097. https://doi.org/10.1016/j.petrol.2020.108097

Muhammad, U. S., & Hamza, M. F. (2022). Fenugreek surfactant: Extraction, synthesis, and evaluation of foam properties for application in enhanced oil recovery. Applied Science and Technology Express, 2022, ASTE-2211032112821.

Mujumdar, S., Joshi, P., & Karve, N. (2019). Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: A review. Journal of Basic Microbiology, 59(3), 277–287. https://doi.org/10.1002/jobm.201800364

Mushtaq, M., Tan, I. M., Ismail, L., Nadeem, M., Sagir, M., & Azam, R. (2014). Influence of PZC (point of zero charge) on the static adsorption of anionic surfactants on a Malaysian sandstone. Journal of Dispersion Science and Technology, 35(3), 343–349. https://doi.org/10.1080/01932691.2013.785362

Nakama, Y. (2017). Chapter 15 – Surfactants. In K. Sakamoto, R. Y. Lochhead, H. I. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology (pp. 231–244). Elsevier. https://doi.org/10.1016/B978-0-12-802005-0.00015-X

Natalya, S. A. C., Kadja, G. T. M., Azhari, N. J., Khalil, M., & Fajar, A. T. N. (2022). Two-dimensional (2D) nanomaterials for enhanced oil recovery (EOR): A review. FlatChem, 34, 100383. https://doi.org/10.1016/j.flatc.2022.100383

Naughton, P., Marchant, R., Naughton, V., & Banat, I. M. (2019). Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. Journal of Applied Microbiology, 127(1), 12–28. https://doi.org/10.1111/jam.14243

Nowrouzi, I., Mohammadi ,A. H., & Manshad, A. K. (2020). Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. Journal of Petroleum Science and Engineering, 189, 106901. https://doi.org/10.1016/j.petrol.2019.106901

Nowrouzi, I., Mohammadi, A. H., & Khaksar M. A. (2021). Double-Chain Single-Head modification of extracted saponin from Anabasis Setifera plant and its effects on chemical enhanced oil recovery process by surfactant-alkali slug injection into carbonate oil reservoirs. Journal of Petroleum Science and Engineering, 201, 108438. https://doi.org/10.1016/j.petrol.2021.108438

Onaizi, S. A., Alsulaimani, M., Al-Sakkaf, M. K., Bahadi, S. A., Mahmoud, M. & Alshami, A. (2021). Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. Journal of Petroleum Science and Engineering, 198, 108173. https://doi.org/10.1016/j.petrol.2020.108173

Østergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H., & Kalogirou, S. (2020). Sustainable development using renewable energy technology. Renewable Energy, 146, 2430–2437. https://doi.org/10.1016/j.renene.2019.08.094

Panjiar, N., Mattam, A. J., Jose, S., Gandham, S., & Velankar, H. R. (2020). Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. Science of The Total Environment, 729, 138933. https://doi.org/10.1016/j.scitotenv.2020.138933

Perfumo, A., Rancich, I. & Banat, I.M. (2010). Possibilities and challenges for biosurfactants use in petroleum industry. In R. Sen (Ed.), Biosurfactants: Advances in experimental medicine and biology (pp. 135–145). Springer. https://doi.org/10.1007/978-1-4419-5979-9_10

Raihan, A., Pavel, M. I., Muhtasim, D. A., Farhana, S., Faruk, O., & Paul, A. (2023). The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innovation and Green Development, 2(1), 100035. https://doi.org/10.1016/j.igd.2023.100035

Saharan, B., Sahu, R., & Sharma, D. (2011). A review on biosurfactants: fermentation, current developments, and perspectives. Genetic Engineering and Biotechnology Journal, 29, 1–39.

Samak, N. A., Mahmoud, T., Aboulrous, A., Abdelhamid, M., & Xing, J. J. E. (2020). Enhanced biosurfactant production using developed fed-batch fermentation for effective heavy crude oil recovery. Energy & Fuels, 34(11), 14560–14572. https://doi.org/10.1021/acs.energyfuels.0c02676

Sarubbo, L. A., Silva, M. d. G. C., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., & Silva, I. A. (2022). Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 181, 108377. https://doi.org/10.1016/j.bej.2022.108377

Sohail, R., & Jamil, N. (2019). Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel-based carbon sources. Green Processing and Synthesis, 9(1), 77–86. https://doi.org/10.1515/gps-2020-0009

Tackie-Otoo, B. N., Ayoub & Mohammed, M. A. (2020). Experimental investigation of the behaviour of a novel amino acid-based surfactant relevant to EOR application. Journal of Molecular Liquids, 316, 113848. https://doi.org/10.1016/j.molliq.2020.113848

Tang, X.-C. Y.-Q. Li, Liu, Z.-Y., & Zhang, N. (2022). Nanoparticle-reinforced foam system for enhanced oil recovery (EOR): Mechanistic review and perspective. Petroleum Science, 20(4). https://doi.org/10.1016/j.petsci.2022.12.007

Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science, 79(7), R1231–R1249. https://doi.org/10.1111/1750-3841.12492

Xi, W., Ping, Y., & Alikhani, M. A. (2021). A review on biosurfactant applications in the petroleum industry. International Journal of Chemical Engineering, 2021, 5477185 2021. https://doi.org/10.1155/221/5477185

Downloads

Published

2024-04-30

How to Cite

Hamza, M. F., Ismail, L. ., Mudassir Hassan, Y. ., Sikiru, S. ., Soleimani, H., & Shehu Imam, S. (2024). A mini-review on biosurfactants from natural-based resources: Sources, production, and application in oil industries. Malaysian Journal of Chemical Engineering &Amp; Technology, 7(1), 1–13. https://doi.org/10.24191/mjcet.v7i1.592