The Performance of Chlorophyll-a Distribution Estimation by Using Ratio Algorithm on Landsat-8 in Sungai Merbok Estuary.

Authors

  • Jesse Vince Rabing Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Khairul Naim Abd.Aziz Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Sharir Aizat Kamaruddin Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Muhammad Akmal Roslani Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Jamil Tajam Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Aziani Ahmad Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Rosnani Nazri Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Zamzila Erdawati Zainol Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Rohayu Ramli Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
  • Mohd Idrus Shaari Marine Research Station, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia

Keywords:

Chlorophyll-a, Ratio Algorithm, Landsat-8, Chlorophyll Distribution, Sungai Merbok

Abstract

The presence of phytoplankton in the water is important as the primary food source of various aquatic lives as well as to determine its pollution level. Among many, the ratio algorithm is one of the approaches in remote sensing used to detect chlorophyll-a in the phytoplankton for its distribution and monitoring. However, some algorithms usages are limited to spatial, temporal, and other factors, hence the performance evaluation of algorithms developed are indeed important for robust observation and monitoring purposes. This study explores the applicability of ratio algorithms for estimation of the chl-a concentration at Sungai Merbok by assessing chl-a distribution pattern built by the algorithms and evaluating each algorithm for their errors compared to in-situ data. The distribution models generated from the algorithms were utilizing Landsat-8 satellite images with B-G and B-R bands ratio. The statistical analysis employed regression models such as p-value, r, R2, and RMSE for both algorithms' performance evaluations. Overall, the chl-a distribution along Sungai Merbok shows a safe concentration with fluctuation in a wide interval, however, both algorithms predicted much low concentration values with narrow and consistent variations. On average, Sungai Merbok recorded 9.52 mg/L chl-a concentration, while B-G and B-R algorithm predicted a lower average at 1.04 and 2.83 mg/L respectively. Although B-G and B-R algorithms both have a significant relation with strong correlation, B-G shows a higher coefficient of determination with 65% variation compared to B-R with about 60%. B-R ratio performed better with a lower RMSE value of 10.22 as compared to 11.48 for B-G.  The findings of this study perhaps will be helpful to the traditional fishermen, local entrepreneurs, and relevant authorities for sustainable fisheries resources and management.

References

Ayeni, A. O., & Odume, J. I. (2020). Analysis of Algae Concentration in the Lagos Lagoon Using Eye on Water and Algae Estimator Mobile App. FUTY Journal of the Environment, 14(2), 105-115.

Boucher, J., Weathers, K. C., Norouzi, H., & Steele, B. (2018). Assessing the effectiveness of Landsat 8 chlorophyll-a retrieval algorithms for regional freshwater monitoring. Ecological Applications, 28(4), 1044-1054.

Buditama, G., Damayanti, A., & Tjiong, G. P. (2017). Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon. IOP Conference Series Earth and Environmental Science, 98(1): 012040.

Bužančić, M., Gladan, Ž. N., Marasović, I., Kušpilić, G., & Grbec, B. (2016). Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast. Oceanologia, 58(4), 302-316.

Ghozalideh, M. H., Melesse, A. M., & Reddi, L. (2016). A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(8). 1298

Kabbara, N., Benkhelil, J., Awad, M., & Barale, V. (2008). Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5), 488-495.

Keith, D., Rover, J., Green, J., Zalewsky, B., Charpentier, M., Thursby, G., & Bishop, J. (2018). Monitoring Algal Blooms in drinking water reservoirs using the Landsat 8 Operational Land Imager. International Journal of Remote Sensing, 39(9), 2818–2846.

Le, C., Li, Y., Zha, Y., & Sun, D. (2008). Specific absorption coefficient and the Phytoplankton package effect in Lake Taihu, China. Hydrobiologia , 619(1), 27–37.

Mansaray, A., Dzialowski, A. R., Martin, M. E., Wagner, K. L., Gholizadeh, H., & Stoodley, S. H. (2021). Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sensing, 13(9).

Markogianni, V., Kalivas, D., Petropoulos, G. P., & Dimitriou, E. (2020). Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat Data. Remote Sensing, 12(13), 2087.

Maznah, W. O. W., Sharifah, R., Chiew, L. C., Wan, P. L., Kaniz, F., & Mansor, M. I. (2016). Effects of tidal events on the composition and distribution of phytoplankton in Merbok river estuary Kedah, Malaysia. Tropical Ecology, 57(2), 213–229.

Mohd-Din, M., Abdul-Wahab, M. F., Mohamad, S. E., Jamaluddin, H., Shahir, S., Ibrahim, Z., Hii, K. S., Tan, S. N., Leaw, C. P., Gu, H., & Lim, P. T. (2020). Prolonged high biomass diatom blooms induced formation of hypoxic-anoxic zones in the inner part of Johor Strait. Environmental Science and Pollution Research, 27(34), 42948-42959.

Napiórkowska-Krzebietke, A. (2017). Phytoplankton as a Basic Nutritional Source in Diets of Fish. Journal of Elementology, 22(3), 831-841.

Ohara, S., Koike, K., Sakuno, Y., & Wang, Z. (2018). Evaluation of Chlorophyll-a Estimation Approaches Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression and Several Traditional Algorithms from Field Hyperspectral Measurements in the Seto Inland Sea, Japan. Sensors, 18(8).

Pham, H. L., Nguyen, H. T., Binh, N. T., Thang, N. N., Oanh, L., & Thao, N. T. (2019). Developing algorithm for estimating chlorophyll-a concentration in the Thac Ba Reservoir surface water using Landsat 8 Imagery. Vietnam Journal of Earth Sciences,41(1), 10-20.

Poddar, S., Chacko, N., & Swain, D. (2019). Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Frontiers in Marine Science, 6.

Ruslan, I. W., Nazrul, I. M., Kusyairi, M. Z. M., & Zullyadini , R. A. (2014). Nitrogen Loading Input into Merbok River Estuary, Kedah, Malaysia. 1st National Conference on Non-Point Sources Pollution 2014.

Saifullah, A. S. M., Hena, M. K. A., Hanafi, I. M., Halimah, R. A., & Khurshid, A. B. M. (2015). Phytoplankton in tropical mangrove estuaries: role and interdependency. Forest Science and Technology, 12(2), 104–113.

Salem, S. I., Hiroto, H., Kim, H., Hiroshi, K., Kazuo, O., & Taikan, O. (2021). Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors, 17(8).

Seyma, M. K. & Ersin, A. (2018). Estimating Chlorophyll-a Concentration using Remote Sensing Techniques. Annals of Reviews and Research, 4(2): 555633, 33-35.

Silvestri, M., Rabuffi, F., Musacchio, M., Teggi, S., & Buongiorno, M. F. (2021). The Use of Satellite TIR Time Series for Thermal Anomalies’ Detection on Natural and Urban Areas. Engineering Proceedings, 5(1).

Watanabe, F., Alcantara, E., Rodrigues, T., Rotta, L., Bernardo, N. & Imai, N. (2017). Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Anais Da Academia Brasileira De Ciências (Annals of the Brazilian Academy of Sciences).

Ye, H., Chen, C., & Yang, C. (2016). Atmospheric Correction of Landsat-8/OLI Imagery in Turbid Estuarine Waters: A Case Study for the Pearl River Estuary. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1), 252–261.

Downloads

Published

2022-04-30

Issue

Section

Archives

Most read articles by the same author(s)