PREVALENCE OF ESCHERICHIA COLI AND SALMONELLA IN FISH AND BLOOD CLAM (ANADARA GRANOSA) FROM WET MARKETS AND HYPERMARKETS IN KUALA PILAH

Authors

  • Fatin Batrisyia Johari School of Biological Sciences, Faculty of Applied Science Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Nur Fatin Farhanah Zapri School of Biological Sciences, Faculty of Applied Science Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Suwaibah Mohamed School of Biological Sciences, Faculty of Applied Science Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

Keywords:

Anadara granosa, Antimicrobial resistance bacteria, Escherichia coli; Fish, Salmonella

Abstract

Food poisoning is one of Malaysia's top five infectious illnesses, with Salmonella serovars as the most
known infectious agent. Pathogenic microorganisms, particularly Salmonella and E. coli, have been
detected in various seafood, mostly fish and clamps. Thus, this study aims to assess the prevalence and
antimicrobial resistance of Salmonella and E. coli isolated from wild-caught raw fishes and blood clam
(Anadara granosa) from wet markets and hypermarkets in Kuala Pilah Negeri Sembilan. A total of 15
fish were sampled from three hypermarkets. Meanwhile, 18 blood clams were sampled from three wet
markets in Kuala Pilah, Negeri Sembilan. The surface of fish (skin, gills, and guts) and blood clam
(inner, outer, and meat) were swabbed to isolate Salmonella and E. coli. The isolates were then
identified based on their morphological characteristics, and further confirmation was done using a
biochemical test. The assessment of bacterial resistance was conducted using an antibiotic susceptibility
test involving seven antibiotics: tetracycline (30 µg), streptomycin (10 µg), nalidixic acid (30 µg),
ciprofloxacin
(5
µg),
ampicillin
(10
and
2
µg),
chloramphenicol
(30
µg),
sulphamethoxazole/trimethoprim (25 µg) and Multiple antibiotic resistants (MAR). Findings showed
that 6.7% (1/15) of isolates from fish samples tested positive for both bacteria. However, only 5.6%
(1/18) of blood clam samples contained Salmonella. Most isolates were susceptible to antibiotics except
for ampicillin, while MAR index results showed a value within 0.2 for both samples, indicating the
samples had minimal exposure to antibiotics usage. In conclusion, the presence of Salmonella and E.
coli in collected samples and their resistance to antibiotics may derive from contamination occurring in
the natural aquatic environment, during processing, or due to unhygienic and improper handling.
Therefore, effective control strategies should be implemented to prevent potential contamination,
especially when handling and processing the fish and blood clam.

References

Ali, A., Parisi, A., Conversano, M. C., Iannacci, A., D’Emilio, F., Mercurio, V., & Normanno, G. (2020). Food

Borne Bacteria Associated with Seafoods: A Brief Review. Journal of Food Quality and Hazards Control, 7(1).

-10. https://doi.org/10.18502/jfqhc.7.1.2446

Amalia, U., & Darmanto, Y. S. (2020). Prevalence of Salmonella spp. in fresh fish and shrimp in Semarang's

Traditional Markets (Indonesia) through Polymerase Chain Reaction. Biodiversitas Journal of Biological

Diversity, 21(6). 2500-2505 https://doi.org/10.13057/biodiv/d210622

Assefa, A., Regassa, F., Ayana, D., Amenu, K., & Abunna, F. (2019). Prevalence and antibiotic susceptibility

pattern of Escherichia coli O157:H7 isolated from harvested fish at Lake Hayq and Tekeze dam, Northern

Ethiopia. Heliyon, 5(12), e02996–e02996. https://doi.org/10.1016/j.heliyon.2019.e02996

Atwill, E. R., & Jeamsripong, S. (2021). Bacterial diversity and potential risk factors associated

with Salmonella contamination of seafood products sold in retail markets in Bangkok, Thailand. PeerJ, 9, e12694.

https://doi.org/10.7717/peerj.12694

Ava, A., Faridullah, M., Lithi, U., & Roy, V. (2020). Incidence of Salmonella and Escherichia coli in fish farms

and markets in Dinajpur, Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 55(1), 65–72.

https://doi.org/10.3329/bjsir.v55i1.46733

Beyari, E. A., Aly, M. M., & Jastaniah, S. D. (2021). Incidence of FFoodborneBacteria that cause Serious Health

Hazards in Fish: A Review. Annals of Medical and Health Sciences Research, 11(4), 60–66. Retrieved from

https://www.amhsr.org/articles/incidence-of-foodborne-bacteria-that-cause-serious-health-hazards-in-fish-a

review.pdf

Frontiers

Braz, V. S., Melchior, K., & Moreira, C. G. (2020). Escherichia coli as a Multifaceted Pathogenic and Versatile

Bacterium.

in

Cellular

https://doi.org/10.3389/fcimb.2020.548492

and

Infection

Microbiology,

,

Dr Laurence Knott. (2019). Salmonella. https://patient.info/digestive-health/diarrhoea/salmonella [Access online

August 2022].

Dewi, R. R., Hassan, L., Daud, H. M., Matori, Mohd. F., Nordin, F., Ahmad, N. I., & Zakaria, Z. (2022).

Prevalence and Antimicrobial Resistance of Escherichia coli, Salmonella and Vibrio Derived from Farm-Raised

Red Hybrid Tilapia (Oreochromis spp.) and Asian Sea Bass (Lates calcarifer, Bloch 1970) on the West Coast of

Peninsular Malaysia. Antibiotics, 11(2), 136. https://doi.org/10.3390/antibiotics11020136

Dumen, E., Ekici, G., Ergin, S., & Bayrakal, G. M. (2020). Presence of FFoodbornePathogens in Seafood and

Risk Ranking for Pathogens. FFoodbornePathogens and Disease, 17(9). https://doi.org/10.1089/fpd.2019.2753

Feng, P., Weagant, S. D., Grant, M. A., & Burkhardt, W. (2020). BAM Chapter 4: Enumeration of Escherichia

coli and the Coliform Bacteria. FDA. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4

enumeration-escherichia-coli-and-coliform-bacteria. [Access online 24 August 2022].

Fernandes, D. V. G. S., Castro, V. S., Cunha Neto, A. da, & Figueiredo, E. E. de S. (2018). Salmonella spp. in the

fish production chain: a review. Ciência Rural, 48(8). https://doi.org/10.1590/0103-8478cr20180141

Galhano, B. S. P., Ferrari, R. G., Panzenhagen, P., de Jesus, A. C. S., & Conte-Junior, C. A. (2021). Antimicrobial

Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and

Advantages. Microorganisms, 9(5), 923. https://doi.org/10.3390/microorganisms9050923

Gufe, C., Canaan Hodobo, T., Mbonjani, B., Majonga, O., Marumure, J., Musari, S., Machakwa, J. (2019).

Antimicrobial Profiling of Bacteria Isolated from Fish Sold at Informal Market in Mufakose, Zimbabwe.

International Journal of Microbiology, 2019, 1–7. https://doi.org/10.1155/2019/8759636

Jahan, S., Jewel, M. A. S., Haque, M. A., Hasan, J., Mita, M. M., Aktar, A., & Al-Amin, M. (2019). Current status

of bacterial contamination in some fish species of Bakkhali River Estuary, Bangladesh. Archives of Agriculture

and Environmental Science, 4(1), 96–100. https://doi.org/10.26832/24566632.2019.0401015

Jajere, S. M. (2019). A review of Salmonella enterica with particular focus on the pathogenicity and virulence

factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World, 12(4), 504

https://doi.org/10.14202/vetworld.2019.504-521

Khasanah, U., Mahasri, G., & Kusdarwati, R. (2021). Examination of Escherichia coli Bacteria in Blood Cockle

Satay (Anadara granosa) Sold at Surabaya Traditional Market, Indonesia. World's Veterinary Journal, 11(1), 79

https://doi.org/10.54203/scil.2021.wvj11Krumperman, P. H. (1983). Multiple antibiotic resistance indexing

of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental

Microbiology, 46(1), 165–170. https://doi.org/10.1128/aem.46.1.165-170.1983

Love, D. C., Nussbaumer, E. M., Harding, J., Gephart, J. A., Anderson, J. L., Asche, F., Stoll, J.S., Thorne-Lyman,

A.L., & Bloem, M. W. (2021). Risks shift along seafood supply chains. Global Food Security, 28, 100476.

https://doi.org/10.1016/j.gfs.2020.100476

Miotto, M., Ossai, S. A., Meredith, J. E., Barretta, C., Kist, A., Prudencio, E. S., … Parveen, S. (2018). Genotypic

and phenotypic characterization of Escherichia coli isolated from mollusks in Brazil and the United States.

MicrobiologyOpen, 8(5). https://doi.org/10.1002/mbo3.738

Pepi, M., & Focardi, S. (2021). Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge

for Health in the Mediterranean Area. International Journal of Environmental Research and Public Health,

(11), 5723. https://doi.org/10.3390/ijerph18115723

Prabhakar, P., Lekshmi, M., Ammini, P., Nayak, B. B., & Kumar, S. (2020). Salmonella Contamination of

Seafood in Landing Centers and Retail Markets of Mumbai, India. Journal of Aoac International, 103(5), 1361

https://doi.org/10.1093/jaoacint/qsaa042

market.

Pramono, H., Kurniawan, A., Andika, N., Putra, T. F., Hazwin, M. A. R., Utari, S., Kurniawan, A. P., Masitah,

E.D. & Sahidu, A. M. (2019). Detection of antibiotic-resistant Salmonella sp. in the seafood products of Surabaya

local

IOP Conference Series: Earth and Environmental Science, 236, 012115.

https://doi.org/10.1088/1755-1315/236/1/012115

Sheng, L., & Wang, L. (2020). The microbial safety of fish and fish products: Recent advances in understanding

its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food

Safety, 20(1), 738–786. https://doi.org/10.1111/1541-4337.12671

Smith, A., & Hussey, M. (2005). Gram Stain Protocols. American Society for Microbiology. Retrieved from

American Society for Microbiology website: https://asm.org/getattachment/5c95a063-326b-4b2f-98ce

de9a5ece3/gram-stain-protocol-2886.pdf

Stephen, J., Mukherjee, S., Lekshmi, M., Kumar, S., & Varela, M. (2021). Antibiotic resistance in fishborne

pathogens of public health significance: An emerging food safety issue. Retrieved from

https://www.researchgate.net/publication/350431199_Antibiotic_resistance_in_fish

borne_pathogens_of_public_health_significance_An_emerging_food_safety_issue

Tanyag, B., Quiambao, J. J., Ko, A. A., Singh, A., Cambia, F., & Montojo, U. (2021). Prevalence of invA Gene

of Salmonella spp. in Fish and Fishery Resources from Manila Bay Aquaculture Farms Using Real-Time PCR.

Applied Microbiology, 1(3), 510–519. https://doi.org/10.3390/applmicrobiol1030033

Thakali, A., &MacRae, J. D. (2021). A review of chemical and microbial contamination in food: What are the

threats to a circular food system?. Environmental research, 194, 110635. doi: 10.1016/j.envres.2020.110635

Wattimena, M. L., Mailoa, M. N., Tupan, J., Putri, F. A., Nanlohy, E. E. E. M., Leiwerissa, S., leiwakabessy, J.,

Lokollo, E., Huwae, J. R. & Usu, L. (2021). Investigation of Escherichia coli contamination in fresh momar

(Decapterus sp) in Ambon City fish market. IOP Conference Series: Earth and Environmental Science, 797(1),

https://doi.org/10.1088/1755-1315/797/1/012023

World Health Organization. (2018). Salmonella (non-typhoidal). https://www.who.int/news-room/fact

sheets/detail/salmonella-(non-typhoidal). [Access online 24 August 2022]..

Wyatt, L.E., Nickelson, R. & Vanderzant, C. (1979), Occurrence and control of Salmonella in freshwater catfish,

Journal of food sciences. 44: 1067-1073. DOI: 10.1111/j.1365-2621.1979.tb03448.x

Downloads

Published

2022-10-31