Comparative Evaluation of 3D Building Model Using UAV Photogrammetry and Terrestrial Laser Scanner (TLS)

Authors

  • Golwes Edson Anak Gaong Studies for Surveying Science and Geomatics, School of Geomatics Science and Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Ahmad Norhisyam Bin Idris Studies for Surveying Science and Geomatics, School of Geomatics Science and Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Lau Chong Luh Studies for Surveying Science and Geomatics, School of Geomatics Science and Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Abdul Aziz Ab Rahman Studies for Surveying Science and Geomatics, School of Geomatics Science and Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Wan Mohamed Syafuan Wan Mohamed Sabri Department of Civil Engineering, Faculty of Engineering, National Defense University of Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, MALAYSIA
  • Abdul Hadi Abdul Jalil Topcon Positioning Asia (Malaysia) Sdn. Bhd., 6, Jalan Pensyarah U1/28, Hicom-Glenmarie Industrial Park, 40150 Shah Alam, MALAYSI

DOI:

https://doi.org/10.24191/bej.v22i1.1066

Keywords:

Unmanned Aerial Vehicle (UAV), Terrestrial Laser Scanner (TLS), Ground Control Point (GCP), 3D Modeling, Quality, Accuracy

Abstract

With the growing emphasis on sustainability and resource efficiency within the architectural, engineering, and construction (AEC) sectors, Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanner (TLS) have emerged as indispensable tools for the monitoring and inspection of building structures by using 3D modelling. This research is dedicated to assessing the quality and accuracy obtained from 3D modelling for a building and its structural components between UAV photogrammetry and TLS techniques. The investigation involved nadir and oblique flight missions for UAV data acquisition around the target structure, utilising six (6) Ground Control Points (GCPs), while TLS data collection employed direct georeferencing via the traversing method. The results revealed that TLS yielded superior surface reconstruction quality owing to its denser point cloud density, whereas UAV data met the requirements of numerous applications, offering a convenient and economically viable data acquisition solution. Regarding accuracy, a minimal disparity was observed for building objects discernible from both instruments, achieving centimetre-level accuracy. These findings not only highlighted the potential of UAVs and TLS in optimising 3D modelling processes but also offered practical insights for professionals engaged in urban planning, architectural design, and structural analysis endeavours.

References

Achille, C., Adami, A., Chiarini, S., Cremonesi, S., Fassi, F., Fregonese, L., & Taffurelli, L. (2015). UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications—Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy). Sensors (Switzerland), 15(7), 15520–15539. https://doi.org/10.3390/s150715520

Aryan, A., Bosché, F., & Tang, P. (2021). Planning for Terrestrial Laser Scanning in Construction: A Review. Automation in Construction, 125(February). https://doi.org/10.1016/j.autcon.2021.103551

Bauwens, S., Bartholomeus, H., Calders, K., & Lejeune, P. (2016). Forest Inventory with Terrestrial Lidar: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7(6). https://doi.org/10.3390/f7060127

Bouziani, M., Chaaba, H., & Ettarid, M. (2021). Evaluation of 3D Building Model Using Terrestrial Laser Scanning and Drone Photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(4/W4-2021), 39–42. https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-39-2021

Buffi, G., Manciola, P., Grassi, S., Barberini, M., & Gambi, A. (2018). Survey of the Ridracoli Dam: UAV - Based Photogrammetry And Traditional Topographic Techniques in the Inspection of Vertical Structures. 26th International Congress on Large Dams, 2018, 8(2), 79–100. https://doi.org/10.1080/19475705.2017.1362039

Chen, S., Laefer, D. F., Mangina, E., Zolanvari, S. M. I., & Byrne, J. (2019). UAV Bridge Inspection through Evaluated 3D Reconstructions. Journal of Bridge Engineering, 24(4), 1–15. https://doi.org/10.1061/(asce)be.1943-5592.0001343

Corporation, T. (2014). Instruction Manual GLS-2000 Series. https://mytopcon.topconpositioning.com/system/files/article_files/gls-2000_e_e_17.pdf

Del Duca, G., & Machado, C. (2023). Assessing the Quality of the Leica BLK2GO Mobile Laser Scanner versus the Focus 3D S120 Static Terrestrial Laser Scanner for a Preliminary Study of Garden Digital Surveying. Heritage, 6(2), 1007–1027. https://doi.org/10.3390/heritage6020057

Dreier, A., Janßen, J., Kuhlmann, H., & Klingbeil, L. (2021). Quality Analysis of Direct Georeferencing in Aspects of Absolute Accuracy and Precision for a UAV-Based Laser Scanning System. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183564

Drešček, U., Fras, M. K., Tekavec, J., & Lisec, A. (2020). Spatial ETL for 3D Building Modelling Based on Unmanned Aerial Vehicle Data in Semi-Urban Areas. Remote Sensing, 12(12). https://doi.org/10.3390/rs12121972

Federman, A., Shrestha, S., Quintero, M. S., Mezzino, D., Gregg, J., Kretz, S., & Ouimet, C. (2018). Unmanned Aerial Vehicles (UAV) Photogrammetry in the Conservation of Historic Places: Carleton Immersive Media Studio Case Studies. Drones, 2(2). https://doi.org/10.3390/drones2020018

Francisco, A.-V., Fernando, C.-R., & Patricio, M.-C. (2017). Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. Journal of Surveying Engineering, 143(2), 4016025. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206

Fröhlich, C., & Mettenleiter, M. (2004). Terrestrial Laser Scanning – New Perspectives in 3D Surveying. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 7–13. https://www.isprs.org/proceedings/xxxvi/8-w2/froehlich.pdf

Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of Unmanned Aerial Vehicles in Monitoring Application and Management of Natural Hazards. Geomatics, Natural Hazards and Risk, 8(1), 1–4. https://doi.org/10.1080/19475705.2017.1315619

Gollob, C., Ritter, T., & Nothdurft, A. (2020). Comparison of 3D Point Clouds Obtained by Terrestrial Laser Scanning and Personal Laser Scanning on Forest Inventory Sample Plots. Data, 5(4), 1–13. https://doi.org/10.3390/data5040103

Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in Civil Infrastructure. Journal of Infrastructure Systems, 25(2). https://doi.org/10.1061/(asce)is.1943-555x.0000464

He, Y., Liang, B., Yang, J., Li, S., & He, J. (2017). An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081862

Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., & Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050285

Karaska, L., Makineci, H. B., & Erdal, K. (2023). Accuracy Assessment Toward Merging of Terrestrial Laser Scanner Point Data and Unmanned Aerial System Point Data. Konya Journal of Engineering Sciences, 11(1), 124–135. https://doi.org/10.36306/konjes.1150611

Kaya, M., & Yilmaz, E. (2020). 3D Modeling of Cultural Heritages with UAV and TLS Systems: A Case Study on the Somuncu Baba Mosque. Journal of Architecture, Engineering & Fine Arts Agca et Al. 2020, 2(1), 1–12. http://dergipark.org.tr/artgrid

Kent, A. J., & Doug Specht. (2023). The Routledge Handbook of Geospatial Technologies and Society. Taylor & Francis. https://books.google.com.my/books?id=8ejGEAAAQBAJ

Klapa, P. (2023). Integration of Terrestrial Laser Scanning and UAV-Based Photogrammetry for Heritage Building Information Modelling. Geomatics, Landmanagement and Landscape, 1(1), 23–34. https://doi.org/10.15576/gll/2023.1.23

Mairaj, A., Baba, A. I., & Javaid, A. Y. (2019). Application Specific Drone Simulators: Recent Advances and Challenges. Simulation Modelling Practice and Theory, 94(October 2018), 100–117. https://doi.org/10.1016/j.simpat.2019.01.004

Mohammadi, M., Rashidi, M., Azandariani, M. G., Mousavi, V., Yu, Y., & Samali, B. (2023). Modern Damage Measurement of Structural Elements: Experiment, Terrestrial Laser Scanning, and Numerical Studies. Structures, 58, {105574}. https://doi.org/10.1016/j.istruc.2023.105574

Mohammadi, M., Rashidi, M., Mousavi, V., Karami, A., Yu, Y., & Samali, B. (2021). Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study. Remote Sensing, 13(17), 1–22. https://doi.org/10.3390/rs13173499

Nex, F., Armenakis, C., Cramer, M., Cucci, D. A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the Advent of the Twenties: Where We Stand and What is Next. ISPRS Journal of Photogrammetry and Remote Sensing, 184(January), 215–242. https://doi.org/10.1016/j.isprsjprs.2021.12.006

Peterson, S., Lopez, J., & Munjy, R. (2019). Comparison of UAV Imagery-Derived Point Cloud to Terrestrial Laser Scanner Point Cloud. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(2/W5), 149–155. https://doi.org/10.5194/isprs-annals-IV-2-W5-149-2019

Sari, B., Hamal, S. N. G., & Ulvi, A. (2020). Documentation of Complex Structure using Unmanned Aerial Vehicle (UAV) Photogrammetry Method and Terrestrial Laser Scanner (TLS). Turkish Journal of LIDAR, 2(2), 48–54. https://dergipark.org.tr/en/download/article-file/1404503

Swayze, N. C., Tinkham, W. T., Vogeler, J. C., & Hudak, A. T. (2021). Influence of Flight Parameters on UAS-Based Monitoring of Tree Height, Diameter, and Density. Remote Sensing of Environment, 263(March), 112540. https://doi.org/10.1016/j.rse.2021.112540

Achille, C., Adami, A., Chiarini, S., Cremonesi, S., Fassi, F., Fregonese, L., & Taffurelli, L. (2015). UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications—Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy). Sensors (Switzerland), 15(7), 15520–15539. https://doi.org/10.3390/s150715520

Aryan, A., Bosché, F., & Tang, P. (2021). Planning for Terrestrial Laser Scanning in Construction: A Review. Automation in Construction, 125(February). https://doi.org/10.1016/j.autcon.2021.103551

Bauwens, S., Bartholomeus, H., Calders, K., & Lejeune, P. (2016). Forest Inventory with Terrestrial Lidar: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7(6). https://doi.org/10.3390/f7060127

Bouziani, M., Chaaba, H., & Ettarid, M. (2021). Evaluation of 3D Building Model Using Terrestrial Laser Scanning and Drone Photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(4/W4-2021), 39–42. https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-39-2021

Buffi, G., Manciola, P., Grassi, S., Barberini, M., & Gambi, A. (2018). Survey of the Ridracoli Dam: UAV - Based Photogrammetry And Traditional Topographic Techniques in the Inspection of Vertical Structures. 26th International Congress on Large Dams, 2018, 8(2), 79–100. https://doi.org/10.1080/19475705.2017.1362039

Chen, S., Laefer, D. F., Mangina, E., Zolanvari, S. M. I., & Byrne, J. (2019). UAV Bridge Inspection through Evaluated 3D Reconstructions. Journal of Bridge Engineering, 24(4), 1–15. https://doi.org/10.1061/(asce)be.1943-5592.0001343

Corporation, T. (2014). Instruction Manual GLS-2000 Series. https://mytopcon.topconpositioning.com/system/files/article_files/gls-2000_e_e_17.pdf

Del Duca, G., & Machado, C. (2023). Assessing the Quality of the Leica BLK2GO Mobile Laser Scanner versus the Focus 3D S120 Static Terrestrial Laser Scanner for a Preliminary Study of Garden Digital Surveying. Heritage, 6(2), 1007–1027. https://doi.org/10.3390/heritage6020057

Dreier, A., Janßen, J., Kuhlmann, H., & Klingbeil, L. (2021). Quality Analysis of Direct Georeferencing in Aspects of Absolute Accuracy and Precision for a UAV-Based Laser Scanning System. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183564

Drešček, U., Fras, M. K., Tekavec, J., & Lisec, A. (2020). Spatial ETL for 3D Building Modelling Based on Unmanned Aerial Vehicle Data in Semi-Urban Areas. Remote Sensing, 12(12). https://doi.org/10.3390/rs12121972

Federman, A., Shrestha, S., Quintero, M. S., Mezzino, D., Gregg, J., Kretz, S., & Ouimet, C. (2018). Unmanned Aerial Vehicles (UAV) Photogrammetry in the Conservation of Historic Places: Carleton Immersive Media Studio Case Studies. Drones, 2(2). https://doi.org/10.3390/drones2020018

Francisco, A.-V., Fernando, C.-R., & Patricio, M.-C. (2017). Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. Journal of Surveying Engineering, 143(2), 4016025. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206

Fröhlich, C., & Mettenleiter, M. (2004). Terrestrial Laser Scanning – New Perspectives in 3D Surveying. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 7–13. https://www.isprs.org/proceedings/xxxvi/8-w2/froehlich.pdf

Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of Unmanned Aerial Vehicles in Monitoring Application and Management of Natural Hazards. Geomatics, Natural Hazards and Risk, 8(1), 1–4. https://doi.org/10.1080/19475705.2017.1315619

Gollob, C., Ritter, T., & Nothdurft, A. (2020). Comparison of 3D Point Clouds Obtained by Terrestrial Laser Scanning and Personal Laser Scanning on Forest Inventory Sample Plots. Data, 5(4), 1–13. https://doi.org/10.3390/data5040103

Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in Civil Infrastructure. Journal of Infrastructure Systems, 25(2). https://doi.org/10.1061/(asce)is.1943-555x.0000464

He, Y., Liang, B., Yang, J., Li, S., & He, J. (2017). An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081862

Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., & Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050285

Karaska, L., Makineci, H. B., & Erdal, K. (2023). Accuracy Assessment Toward Merging of Terrestrial Laser Scanner Point Data and Unmanned Aerial System Point Data. Konya Journal of Engineering Sciences, 11(1), 124–135. https://doi.org/10.36306/konjes.1150611

Kaya, M., & Yilmaz, E. (2020). 3D Modeling of Cultural Heritages with UAV and TLS Systems: A Case Study on the Somuncu Baba Mosque. Journal of Architecture, Engineering & Fine Arts Agca et Al. 2020, 2(1), 1–12. http://dergipark.org.tr/artgrid

Kent, A. J., & Doug Specht. (2023). The Routledge Handbook of Geospatial Technologies and Society. Taylor & Francis. https://books.google.com.my/books?id=8ejGEAAAQBAJ

Klapa, P. (2023). Integration of Terrestrial Laser Scanning and UAV-Based Photogrammetry for Heritage Building Information Modelling. Geomatics, Landmanagement and Landscape, 1(1), 23–34. https://doi.org/10.15576/gll/2023.1.23

Mairaj, A., Baba, A. I., & Javaid, A. Y. (2019). Application Specific Drone Simulators: Recent Advances and Challenges. Simulation Modelling Practice and Theory, 94(October 2018), 100–117. https://doi.org/10.1016/j.simpat.2019.01.004

Mohammadi, M., Rashidi, M., Azandariani, M. G., Mousavi, V., Yu, Y., & Samali, B. (2023). Modern Damage Measurement of Structural Elements: Experiment, Terrestrial Laser Scanning, and Numerical Studies. Structures, 58, {105574}. https://doi.org/10.1016/j.istruc.2023.105574

Mohammadi, M., Rashidi, M., Mousavi, V., Karami, A., Yu, Y., & Samali, B. (2021). Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study. Remote Sensing, 13(17), 1–22. https://doi.org/10.3390/rs13173499

Nex, F., Armenakis, C., Cramer, M., Cucci, D. A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the Advent of the Twenties: Where We Stand and What is Next. ISPRS Journal of Photogrammetry and Remote Sensing, 184(January), 215–242. https://doi.org/10.1016/j.isprsjprs.2021.12.006

Peterson, S., Lopez, J., & Munjy, R. (2019). Comparison of UAV Imagery-Derived Point Cloud to Terrestrial Laser Scanner Point Cloud. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(2/W5), 149–155. https://doi.org/10.5194/isprs-annals-IV-2-W5-149-2019

Sari, B., Hamal, S. N. G., & Ulvi, A. (2020). Documentation of Complex Structure using Unmanned Aerial Vehicle (UAV) Photogrammetry Method and Terrestrial Laser Scanner (TLS). Turkish Journal of LIDAR, 2(2), 48–54. https://dergipark.org.tr/en/download/article-file/1404503

Swayze, N. C., Tinkham, W. T., Vogeler, J. C., & Hudak, A. T. (2021). Influence of Flight Parameters on UAS-Based Monitoring of Tree Height, Diameter, and Density. Remote Sensing of Environment, 263(March), 112540. https://doi.org/10.1016/j.rse.2021.112540

Tezza, D., & Andujar, M. (2019). The State-of-the-Art of Human-Drone Interaction: A Survey. IEEE Access, 7, 167438–167454. https://doi.org/10.1109/ACCESS.2019.2953900

Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current Practices in UAS-Based Environmental Monitoring. Remote Sensing, 12(6). https://doi.org/10.3390/rs12061001

Tysiac, P., Sieńska, A., Tarnowska, M., Kedziorski, P., & Jagoda, M. (2023). Combination of Terrestrial Laser Scanning and UAV Photogrammetry for 3D Modelling and Degradation Assessment of Heritage Building Based on a Lighting Analysis: Case Study—St. Adalbert Church in Gdansk, Poland. Heritage Science, 11(1), 1–14. https://doi.org/10.1186/s40494-023-00897-5

United States Department of Defense. (2005). Unmanned Aircraft Systems Roadmap 2005-2030. https://irp.fas.org/program/collect/uav_roadmap2005.pdf

Vosselman, G., & Maas, H. G. (2010). Airborne and terrestrial laser scanning. CRC Press (Taylor & Francis). https://www.whittlespublishing.com/Airborne_and_Terrestrial_Laser_Scanning

Williams, R. D., Lamy, M., Maniatis, G., & Stott, E. (2019). Three‐dimensional reconstruction of fluvial surface sedimentology and topography using personal mobile laser scanning. Earth Surface Processes and Landforms, 45(1), 251–261. https://doi.org/10.1002/esp.4747

Downloads

Published

01-01-2025

How to Cite

Anak Gaong , G. E. ., Bin Idris, A. N., Lau Chong Luh, Ab Rahman, A. A., Wan Mohamed Sabri, W. M. S. ., & Abdul Jalil, A. H. . (2025). Comparative Evaluation of 3D Building Model Using UAV Photogrammetry and Terrestrial Laser Scanner (TLS). Built Environment Journal, 22(1). https://doi.org/10.24191/bej.v22i1.1066