Automated Detection of Individual Tree Parameters using Terrestrial Laser Scanning Data
DOI:
https://doi.org/10.24191/bej.v22i1.2265Keywords:
Laser Scanning, Tropical Forest, LiDAR, Aboveground biomass, Tree detectionAbstract
The National Forest Inventory aims to provide current information on forest resources for planning, management, development, and maintenance purposes, as well as quantitative and qualitative data on forest resources. Although destructive sampling is the most accurate method for obtaining tree information, it requires substantial resources, is time-consuming, and labour-intensive. This study was undertaken to compare the effectiveness of Terrestrial Laser Scanning (TLS) in extracting tree parameters in comparison to conventional methods. The results revealed a strong positive correlation between field-measured Diameter Breast Height (DBH) and manually extracted DBH from TLS point cloud data, with an r value of 1.0 and a Root Mean Square Error (RMSE) of 1.48 cm. However, the relationship between field-measured height and manually extracted height from TLS point cloud exhibited a weak correlation, with an r value of 0.70 and an RMSE value of 7.9 m. In conclusion, TLS data has a significant impact on enhancing the management and monitoring of the inventory status of tropical forests in Malaysia.
References
Abegg, M., Kükenbrink, D., Zell, J., Schaepman, M. E., & Morsdorf, F. (2017). Terrestrial laser scanning for forest inventories-tree diameter distribution and scanner location impact on occlusion. Forests, 8(6), 1–29. https://doi.org/10.3390/f8060184
Arkerblom, M., Raumonen, P., Makipaa, R., & Kaasalainen, M. (2017). Automatic tree species recognition with quantitative structure models. Professional Geographer, 191(1), 1–12. https://doi.org/10.1111/j.0033-0124.1965.00020.x
Bauwens, S., Bartholomeus, H., Calders, K., & Lejeune, P. (2016). Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests, 7(6). https://doi.org/10.3390/f7060127
Bazezew, M. N., Hussin, Y. A., & Kloosterman, E. H. (2018). Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. International Journal of Applied Earth Observation and Geoinformation, 73(June 2017), 638–652. https://doi.org/10.1016/j.jag.2018.07.026
Beyene, S. M., Hussin, Y. A., Kloosterman, H. E., & Ismail, M. H. (2020). Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia. Canadian Journal of Remote Sensing, 46(2), 130–145. https://doi.org/10.1080/07038992.2020.1759036
Bienert, A., Georgi, L., Kunz, M., Maas, H. G., & von Oheimb, G. (2018). Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories. Forests, 8(2), 1–25. https://doi.org/10.3390/f9070395
Brown S. (1997). Estimating biomass and biomass change of tropical forests. A Primer, 134(January 1997), 13–33.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., & Kaasalainen, M. (2015). Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution, 6(2), 198–208. https://doi.org/10.1111/2041-210X.12301
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. https://doi.org/10.1111/gcb.12629
Danson, F. M., Hetherington, D., Morsdorf, F., Koetz, B., & Allgöwer, B. (2007). Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4(1), 157–160. https://doi.org/10.1109/LGRS.2006.887064
Decuyper, M., Mulatu, K. A., Brede, B., Calders, K., Armston, J., Rozendaal, D. M. A., Mora, B., Clevers, J. G. P. W., Kooistra, L., Herold, M., & Bongers, F. (2018). Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning. Forest Ecology and Management, 429(July), 327–335. https://doi.org/10.1016/j.foreco.2018.07.032
Ferraz, A., Saatchi, S., Mallet, C., & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests. Remote Sensing of Environment, 183, 318–333. https://doi.org/10.1016/j.rse.2016.05.028
Hosoi, F., & Omasa, K. (2007). Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. Journal of Experimental Botany, 58(12), 3463–3473. https://doi.org/10.1093/jxb/erm203
Ioki, K., Tsuyuki, S., Hirata, Y., Phua, M. H., Wong, W. V. C., Ling, Z. Y., Saito, H., & Takao, G. (2014). Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. Forest Ecology and Management, 328, 335–341. https://doi.org/10.1016/j.foreco.2014.06.003
Lau, A., Bentley, L. P., Martius, C., Shenkin, A., Bartholomeus, H., Raumonen, P., Malhi, Y., Jackson, T., & Herold, M. (2018). Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees - Structure and Function, 32(5), 1219–1231. https://doi.org/10.1007/s00468-018-1704-1
Liang, X., Hyyppä, J., Kaartinen, H., Pyörälä, J., Lehtomäki, M., Holopainen, M., Kankare, V., Luoma, V., Saarinen, N., Chen, L., & Wang, Y. (2019). Terrestrial laser scanning in forest inventories Xinlian. Official Publication - EuroSDR, 2019(71), 1–29. https://doi.org/10.1016/j.isprsjprs.2016.01.006
Maas, H. G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579–1593. https://doi.org/10.1080/01431160701736406
Mohd Zaki, N. A., & Abd Latif, Z. (2017). Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling. Geocarto International, 32(7), 701–716. https://doi.org/10.1080/10106049.2016.1178814
Mohd Zaki, N. A., Zulkiflee, A. L., & Zainal, M. Z. (2016). Aboveground biomass and carbon estimation using double sampling approach and remotely-sensed data. Jurnal Teknologi, 4, 57–62.
Pazhouhan, I., Najafi, A., Rouhani, A. K., & Vahidi, J. (2017). Extraction of Individual Tree Parameters By Using Terrestrial Laser Scanner Data in Hyricanian Forest. Ecopersia, 5(30043), 1837–1847. https://doi.org/10.18869/modares.Ecopersia.5.3.1837
Prasada, O. P., Hussin, Y. A., Weir, M. J. C., & Karna, Y. K. (2016). Derivation of forest inventory parameters for carbon estimation using terrestrial LiDAR. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 677–684. https://doi.org/10.5194/isprsarchives-XLI-B8-677-2016
Rahman, M. Z. A., Bakar, M. A. A., Razak, K. A., Rasib, A. W., Kanniah, K. D., Kadir, W. H. W., Omar, H., Faidi, A., Kassim, A. R., & Latif, Z. A. (2017). Non-destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest. Forests, 8(3). https://doi.org/10.3390/f8030086
Raumonen, P., Kaasalainen, M., Markku, Å., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., & Lewis, P. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491–520. https://doi.org/10.3390/rs5020491
Strahler, A. H., Jupp, D. L. B., Woodcock, C. E., Schaaf, C. B., Yao, T., Zhao, F., Yang, X., Lovell, J., Culvenor, D., Newnham, G., Ni-miester, W., & Boykin-morris, W. (2008). Retrieval of forest structural parameters using a ground-based lidar instrument ( Echidna ® ). Canadian Journal of Remote Sensing, 34, 426–440.
Tian, J., Dai, T., Li, H., Liao, C., Teng, W., Hu, Q., Ma, W., & Xu, Y. (2019). A novel tree height extraction approach for individual trees by combining TLS and UAV image-based point cloud integration. Forests, 10(7), 1–17. https://doi.org/10.3390/f10070537
Wang, P., Gan, X., Zhang, Q., Bu, G., Li, L., Xu, X., Li, Y., Liu, Z., & Xiao, X. (2019). Analysis of parameters for the accurate and fast estimation of tree diameter at breast height based on simulated point cloud. Remote Sensing, 11(22). https://doi.org/10.3390/rs11222707
Wang, P., Li, R., Bu, G., & Zhao, R. (2019). Automated low-cost terrestrial laser scanner for measuring diameters at breast height and heights of plantation trees. PLoS ONE, 14(1), 1–26. https://doi.org/10.1371/journal.pone.0209888
Wassihun, A. N., Hussin, Y. A., Van Leeuwen, L. M., & Latif, Z. A. (2019). Effect of forest stand density on the estimation of above ground biomass/carbon stock using airborne and terrestrial LIDAR derived tree parameters in tropical rain forest, Malaysia. Environmental Systems Research, 8(1). https://doi.org/10.1186/s40068-019-0155-z
Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., Bartholomeus, H., Brede, B., & Herold, M. (2017). Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment, 196, 140–153. https://doi.org/10.1016/j.rse.2017.04.030
Zulkiflee, A. L., Aman, S. N. A., & Ghazali, R. (2011). Delineation of tree crown and canopy height using airborne LiDAR and aerial photo. Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, 2, 354–358. https://doi.org/10.1109/CSPA.2011.5759902
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohamad Amirul Hafiz Md Shukri, Zulkiflee Abd Latif, Nurul Ain Mohd Zaki, Biswajeet Pradhan, Hamdan Omar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CC BY-NC-ND 4.0 DEED
Attribution-NonCommercial-NoDerivs 4.0 International