Advancements in Phase Change Materials for Nearly Zero Energy Building Design: A Review
DOI:
https://doi.org/10.24191/bej.v22i2.2421Keywords:
Building envelope, Energy, Nearly zero energy building, PCM, Sustainability eco-building, Passive Energy SavingAbstract
Nearly Zero Energy Building (NZEB) leverage passive architectural design and active energy-saving technologies to create comfortable indoor environments while minimising energy use. This study aims to explore the utilisation of Phase Change Materials (PCM) to enhance the thermal inertia of building envelopes, reduce indoor temperature fluctuations, and decrease the capacity requirements of heating and cooling systems. The methodology involves a comprehensive review of the categorisation and properties of PCM, examining their integration with solar, air, and other renewable energy sources. The findings indicate that phase change materials applications in walls, windows, roofs, and floors can significantly enhance thermal inertia, reduce indoor temperature fluctuations, and improve energy efficiency. Additionally, incorporating nanoparticles such as Al₂O₃, TiO₂, and ZnO into PCM has been shown to enhance thermal conductivity, further optimising heat storage performance. The use of PCM presents an efficient and sustainable strategy for improving the energy performance of NZEBs. This study provides a valuable reference for the study and design of nearly zero energy buildings, emphasising sustainability and energy efficiency.
References
Abdulmalik, I., Wang, J., Abiodun, B., Salami, S., Oyedele, L. O., & Otukogbe, G. K. (2023). Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materials: A critical review. Construction and Building Materials, 401, 132877. https://doi.org/10.1016/j.conbuildmat.2023.132877
Abdalla, A. N., & Amin, S. (2023). An experimental comparative assessment of the energy and exergy efficacy of a ternary nanofluid-based photovoltaic/thermal system equipped with a sheet-and-serpentine tube collector. Journal of Cleaner Production, 395, 136460. https://doi.org/10.1016/j.jclepro.2023.136460
Ahangari, M., & Maerefat, M. (2019). An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustainable Cities and Society, 44, 120–129. https://doi.org/10.1016/j.scs.2018.09.008
Al-Yasiri, Q., & Szabó, M. (2021). Paraffin as a phase change material to improve building performance: An overview of applications and thermal conductivity enhancement techniques. Renewable Energy and Environmental Sustainability, 6, Article 38. https://doi.org/10.1051/rees/2021040
Bake, M., Shukla, A., & Liu, S. (2021). Development of gypsum plasterboard embodied with microencapsulated phase change material for energy efficient buildings. Materials Science for Energy Technologies, 4, 166–176. https://doi.org/10.1016/J.MSET.2021.05.001
Chen, C., Cao, X., Zhang, S., Lei, Z., & Zhao, K. (2022). Dynamic characteristic and decoupling relationship of energy consumption on China’s construction industry. Buildings, 12(10), 1745. https://doi.org/10.3390/buildings12101745
Deng, Q., Zhang, S., Shan, M., & Li, J. (2023). Research on Envelope Thermal Performance of Ultra-Low Energy Rural Residential Buildings in China. Sustainability 2023, Vol. 15, Page 6931, 15(8), 6931. https://doi.org/10.3390/SU15086931
Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322
Elder, K. E. (2018). Building envelope. In W. C. Turner & S. Doty (Eds.), Energy management handbook (9th ed., pp. 233–260). River Publishers. https://doi.org/10.1201/9781003151364
Fang, Y., Ding, Y., Tang, Y., Liang, X., Jin, C., Wang, S., Gao, X., & Zhang, Z. (2019). Thermal properties enhancement and application of a novel sodium acetate trihydrate–formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Applied Thermal Engineering, 150, 1177–1185. https://doi.org/10.1016/j.applthermaleng.2019.01.069
Facelli Sanchez, P., & Mercado Hancco, L. (2024). Trombe walls with porous medium insertion and their influence on thermal comfort in flats in Cusco, Peru. Energy and Built Environment, 5(2), 194–210. https://doi.org/10.1016/j.enbenv.2022.09.003
Fachinotti, V. D., Bre, F., Mankel, C., Koenders, E. A. B., & Caggiano, A. (2020). Optimization of Multilayered Walls for Building Envelopes Including PCM-Based Composites. Materials 2020, Vol. 13, Page 2787, 13(12), 2787. https://doi.org/10.3390/MA13122787
Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2020). Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579. https://doi.org/10.1016/j.rser.2019.109579
Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Chahine, K. (2022). Energetic and economic analyses of integrating enhanced macro-encapsulated PCM’s with active underfloor hydronic heating system. Energy Reports, 8, 848-862. https://doi.org/10.1016/j.egyr.2022.07.099
Guo, S., Yan, D., Hu, S., & Zhang, Y. (2021). Modelling building energy consumption in China under different future scenarios. Energy, 214, 119063. https://doi.org/10.1016/j.energy.2020.119063
Hafez, F. S., Sa’di, B., Safa-Gamal, M., Taufiq-Yap, Y. H., Alrifaey, M., Seyedmahmoudian, M., Stojcevski, A., Horan, B., & Mekhilef, S. (2023). Energy efficiency in sustainable buildings: A systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Reviews, 45, 101013. https://doi.org/10.1016/j.esr.2022.101013
Harputlugil, T., & de Wilde, P. (2021). The interaction between humans and buildings for energy efficiency: A critical review. Energy Research & Social Science, 71, 101828. https://doi.org/10.1016/j.erss.2020.101828
Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., Farhan, M., Altaf, K., Said, Z., & Li, C. (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. https://doi.org/10.1016/j.seta.2021.101646
Helmi, R. M., Abdallah, A. S. H., Abd-Elhady, M. S., & Aly, A. M. M. (2025). Influence of embedding paraffin wax in Trombe wall on heating of buildings. Journal of Advanced Engineering Trends, 44(1), 298–306. https://doi.org/10.21608/jaet.2025.323900.1346
Hu, Y., & Heiselberg, P. K. (2018). A new ventilated window with PCM heat exchanger—Performance analysis and design optimization. Energy and Buildings, 169, 185–194. https://doi.org/10.1016/j.enbuild.2018.03.060
Khan, M., Ibrahim, M., & Saeed, T. (2022). Space cooling achievement by using lower electricity in hot months through introducing PCM-enhanced buildings. Journal of Building Engineering, 53, 104506. https://doi.org/10.1016/J.JOBE.2022.104506
Kim, J. T., & Yu, C. W. F. (2018). Sustainable development and requirements for energy efficiency in buildings – The Korean perspectives. Indoor and Built Environment, 27(6), 734–751. https://doi.org/10.1177/1420326X18764622
Kurnitski, J. (2013). Cost optimal and nearly zero-energy buildings (NZEB): definitions, calculation principles and case studies. Springer Science & Business Media.Koláček, M. (2017). Measurement of four-pane building window filled with a PCM. MATEC Web of Conferences, 125, https://doi.org/10.1051/matecconf/201712502019
Lamrani, B., Johannes, K., & Kuznik, F. (2021). Phase change materials integrated into building walls: An updated review. Renewable and Sustainable Energy Reviews, 140, 110751. https://doi.org/10.1016/j.rser.2021.110751
Li, Y., Mao, Y., Wang, W., & Wu, N. (2023). Net-zero energy consumption building in China: An overview of building-integrated photovoltaic case and initiative toward sustainable future development. Buildings, 13(8), 2024. https://doi.org/10.3390/buildings13082024
Luo, Z., & Xu, H. (2025). Experimental study on the thermal performance of a hut integrated with phase change material combined with an active heating system. Applied Thermal Engineering, 268, 125968. https://doi.org/10.1016/j.applthermaleng.2025.125968
Muzhanje, A. T., Hassan, M. A., & Hassan, H. (2022). Phase change material based thermal energy storage applications for air conditioning: Review. Applied Thermal Engineering, 214, 118832. https://doi.org/10.1016/j.applthermaleng.2022.118832
Navarro, L., de Gracia, A., Niall, D., Castell, A., Browne, M., McCormack, S. J., Griffiths, P., & Cabeza, L. F. (2016). Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, 85, 1334–1356. https://doi.org/10.1016/j.renene.2015.06.064
Prajapati, D. G., & Kandasubramanian, B. (2020). A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application. Polymer Reviews, 60(3), 389–419. https://doi.org/10.1080/15583724.2019.1677709
Pritom, M. M., Islam, M. A., Moshwan, M. M., et al. (2024). Phase change materials in textiles: Synthesis, properties, types and applications – A critical review. Textile Research Journal, 94(23–24), 2763–2779. https://doi.org/10.1177/00405175241246822
Sá, A. V., Azenha, M., De Sousa, H., & Samagaio, A. (2012). Thermal enhancement of plastering mortars with phase change materials: Experimental and numerical approach. Energy and Buildings, 49, 16–27. https://doi.org/10.1016/j.enbuild.2012.02.031
Stazi, F., Mastrucci, A., & Di Perna, C. (2012). The behavioSchossig, P., Henning, H. M., Gschwander, S., & Haussmann, T. (2005). Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells, 89(2–3), 297–306. https://doi.org/10.1016/j.solmat.2004.02.057
Stazi, F., Mastrucci, A., & Di Perna, C. (2012).The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study. Energy and Buildings, 47, 217–229. https://doi.org/10.1016/j.enbuild.2011.11.039
Shah, K. W., Ong, P. J., Chua, M. H., Toh, S. H. G., Lee, J. J. C., Soo, X. Y. D., Png, Z. M., Ji, R., Xu, J., & Zhu, Q. (2022). Application of phase change materials in building components and the use of nanotechnology for its improvement. Energy and Buildings, 262, 112018. https://doi.org/10.1016/j.enbuild.2022.112018
Shih, Y. F., Chang, C. W., Hsu, T. H., & Dai, W. Y. (2024). Application of Sustainable Wood-Plastic Composites in Energy-Efficient Construction. Buildings 2024, Vol. 14, Page 958, 14(4), 958. https://doi.org/10.3390/BUILDINGS14040958
Soares, N., Costa, J. J., Gaspar, A. R., & Santos, P. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and Buildings, 59, 82–103. https://doi.org/10.1016/j.enbuild.2012.12.042
Socaciu, L. G. (2012). Thermal energy storage with phase change material. Leonardo Electronic Journal of Practices and Technologies, 20, 75–98. http://lejpt.academicdirect.org/A20/075_098.pdf
Soleiman Dehkordi, B., & Afrand, M. (2022). Energy-saving owing to using PCM into buildings: Considering of hot and cold climate region. Sustainable Energy Technologies and Assessments, 52, 102112. https://doi.org/10.1016/J.SETA.2022.102112
Suresh, C., Hotta, T. K., & Saha, S. K. (2022). Phase change material incorporation techniques in building envelopes for enhancing the building thermal comfort—A review. Energy and Buildings, 268, 112225. https://doi.org/10.1016/j.enbuild.2022.112225
Silva, T., Vicente, R., Soares, N., & Ferreira, V. (2012). Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy and Buildings, 49, 235–245. https://doi.org/10.1016/j.enbuild.2012.02.010
Tyagi, V. V., Chopra, K., Kalidasan, B., Chauhan, A., Stritih, U., Anand, S., Pandey, A. K., Sarı, A., & Kothari, R. (2021). Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: A prospective research approach. Sustainable Energy Technologies and Assessments, 47, 101318. https://doi.org/10.1016/j.seta.2021.101318
Wang, G., Li, X., & Ju, H. (2025). Exterior PCM performance response to multilevel thermal performance and climate change in office buildings. Journal of Energy Storage, 113, 115578. https://doi.org/10.1016/j.est.2025.115578
Xing, J. C., Zhou, Y. C., Yu, Y. X., Li, L. F., & Chang, J. M. (2018). Simulation on heat storage and release performance of fatty acid phase change floor used for ground with heating system. Scientia Silvae Sinicae, 54(11), 20–28. https://www.cabidigitallibrary.org/doi/full/10.5555/20193192374c
Yang, L., Jin, X., Zhang, Y., & Du, K. (2021). Recent development on heat transfer and various applications of phase-change materials. Journal of Cleaner Production, 287, 124432. https://doi.org/10.1016/j.jclepro.2020.124432
Yang, Y. K., Kim, M. Y., Chung, M. H., & Park, J. C. (2019). PCM cool roof systems for mitigating urban heat island—An experimental and numerical analysis. Energy and Buildings, 205, 109537. https://doi.org/10.1016/j.enbuild.2019.109537
Zhang, G., Wang, Z., Li, D., Wu, Y., & Arıcı, M. (2020). Seasonal thermal performance analysis of glazed window filled with paraffin including various nanoparticles. International Journal of Energy Research, 44(4), 3008–3019. https://doi.org/10.1002/er.5129
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suqi Wang, Emma Marinie Binti Ahmad Zawawi , Qi Jie Kwang, Yihan Wu, Congxiang Tian

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CC BY-NC-ND 4.0 DEED
Attribution-NonCommercial-NoDerivs 4.0 International