This is an outdated version published on 01-07-2024. Read the most recent version.

Flooding Resiliency of Surigao del Sur, Caraga Region, Philippines Residences Through Rainwater Catchment and Storage System

Authors

  • Anastacio G. Pantaleon, Jr North Eastern Mindanao State University – Bislig Campus, Philippines
  • Franco G. Pantaleon North Eastern Mindanao State University – Bislig Campus, Philippines
  • Jun Rey S. Lincuna North Eastern Mindanao State University – Bislig Campus, Philippines
  • Leo Ian D. Jovero North Eastern Mindanao State University – Bislig Campus, Philippines

DOI:

https://doi.org/10.24191/bej.v21i2.479

Keywords:

Rainwater storage size, flooding resiliency, rainwater catchment, optimum, disaster risk reduction, simulation

Abstract

Urbanised areas in Northeastern Mindanao have a problem of addressing flooding occurrences. This study primarily aimed to provide insights into how the rainwater catchment system of uptown communities and their cooperation could increase flood resiliency of downtown communities in the Surigao del Sur, Caraga Region, Philippines. This research employed quantitative analysis of the eleven (11) year (2010-2020) data from the Philippine  Atmospheric,  Geophysical,  and  Astronomical  Services Administration - Hinatuan, Surigao del Sur station. The recommendable optimum rainwater storage capacities for a given number of household occupants, roof areas at run-off efficiency of 90%, and three (3) day rainfall characteristics at 36.9% averaged probability of exceedance were initially determined. Through scenario analysis, uptown communities emptying their rainwater storages before heavy downpour occurs could provide sufficient flood volume reduction and buffer time for downtown communities to prepare. The output of this research is vital in the environmental planning, management, and policies of cities and regions.

References

A Oraya, A. F. (2023). Rainwater harvesting tank sizing: a case in urban catchments in Metro Cebu. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755- 1315/1184/1/012014

Adikari, Y., Osti, R., & Noro, T. (2010). Flood-related disaster vulnerability: An impending crisis of megacities in Asia. Journal of Flood Risk Management, 3(3), 185–191. https://doi.org/10.1111/j.1753- 318X.2010.01068.x

Ahern, M., Kovats, R. S., Wilkinson, P., Few, R., & Matthies, F. (2005). Global health impacts of floods: epidemiologic evidence. Epidemiologic Reviews, 27(1), 36–46. https://doi.org/10.1093/EPIREV/MXI004

Ahmed, E. S. M. S., & Mays, L. W. (2013). Model for determining real-time optimal dam releases during flooding conditions. Natural Hazards, 65(3), 1849–1861. https://doi.org/10.1007/s11069-012-0444-6

Akter, A., Tanim, A. H., & Islam, M. K. (2020). Possibilities of urban flood reduction through distributed- scale rainwater harvesting. Water Science and Engineering, 13(2), 95–105. https://doi.org/10.1016/j.wse.2020.06.001

Alcantara, J. C., & Christopher, J. (2019). Overview of the societal impacts of floods in the Philippines. Parliament Institute of Cambodia. September Issue. https://pcasia.org/pic/wp-content/uploads/simple- file-list/20191014_Overview-of-the-Societal-Impacts-of-the-Philippines.pdf

Alfonso, C. D. Q., Sundo, M. B., Zafra, R. G., Velasco, P. P., Aguirre, J. J. C., & Madlangbayan, M. S. (2019). Flood risk assessment of major river basins in the Philippines. International Journal of GEOMATE, 17(64), 201–208. https://doi.org/10.21660/2019.64.17155

Andres, J. F., & Loretero, M. E. (2021). Energy equivalent of rainwater harvesting for high-rise building in the Philippines. Civil Engineering and Architecture, 9(1), 74–84. https://doi.org/10.13189/cea.2021.090106

B. Racoma, B. A., Klingaman, N. P., Holloway, C. E., Schiemann, R., & Bagtasa, G. (2021). Tropical cyclone characteristics associated with extreme precipitation in the Northern Philippines. International Journal of Climatology. https://doi.org/10.1002/joc.7416

Balogun, I. I., Sojobi, A. O., & Oyedepo, B. O. (2016). Assessment of rainfall variability, rainwater harvesting potential and storage requirements in Odeda local government area of Ogun State in South- Western Nigeria. Cogent Environmental Science, 2(1), 1–24. https://doi.org/10.1080/23311843.2016.1138597

Bañados, J. H., & Quijano, I. P. (2022). Rainwater retention site assessment for urban flood risk reduction and flood defence in Mandaue City, Philippines. Isprs Annals of the Photogrammetry Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-x-3-w1-2022-1-2022

Basack, S., Loganathan, M., Goswami, G., Baruah, P., & Alam, R. (2022). Review of risk assessment and mitigation measures of coastal aquifers vulnerable to saline water intrusion. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/142382

Bayoumy, S. H., El-Marsafy, S. M., & Ahmed, T. S. (2020). Optimization of a saturated gas plant: meticulous simulation-based optimization–a case study. Journal of Advanced Research, 22, 21-33. https://doi.org/10.1016/j.jare.2019.11.011

Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L., & Romieu, I. (2001). The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environmental Health Perspectives, 109(SUPPL. 2), 199–209. https://doi.org/10.2307/3435010

Berwanger, H., & Ghisi, E. (2018). Investment feasibility analysis of rainwater harvesting in a building in Brazil. Water Science and Technology: Water Supply, 18(4), 1497–1504. https://doi.org/10.2166/ws.2017.218

Borgonia, K. M. M., & Fornis, R. L. (2020). Estimation of the reduction in flood peak and flood volume due to rooftop rainwater harvesting for nonpotable use. AIP Conference Proceedings, 2278, 1–8. https://doi.org/10.1063/5.0014516

Bourque L.B., Siegel J.M., Kano M., Wood M.M. (2007). Morbidity and mortality associated with disasters. In: handbook of disaster research. Handbooks of sociology and social research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32353-4_6"

Brakenridge, G. R., Syvitski, J. P. M., Niebuhr, E., Overeem, I., Higgins, S. A., Kettner, A. J., & Prades, L. (2017). Design with nature: causation and avoidance of catastrophic flooding, Myanmar. Earth- Science Reviews, 165, 81–109. https://doi.org/10.1016/j.earscirev.2016.12.009

Brandalise, M., Prandel, J., Quadros, F., Rovani, I., Malysz, M., & Decian, V. (2019). Influence of urbanization on the dynamics of the urban Vegetation Coverage Index (VCI) in Erechim (RS). Floresta e Ambiente, 26(2). https://doi.org/10.1590/2179-8087.030117

Burns, M. J., Fletcher, T. D., Hatt, B. E., Anthony, R., & Walsh, C. J. (2010). Can allotment-scale rainwater harvesting manage urban flood risk and protect stream health? 7th International Conference on Sustainable Techniques and Strategies for Urban Water Management, 1–10. https://hal.science/hal- 03296680/document

Cabrera, J. S., & Lee, H. S. (2018). Impacts of climate change on flood-prone areas in Davao Oriental, Philippines. Water. https://doi.org/10.3390/w10070893

Campisano, A., & Modica, C. (2012). Regional scale analysis for the design of storage tanks for domestic rainwater harvesting systems. Water Science and Technology, 66(1), 1–8. https://doi.org/10.2166/wst.2012.171

Cao, H. (2023). Urban resilience: concept, influencing factors and improvement. Frontiers in Business, Economics and Management, 9(1), 343-346. https://doi.org/10.54097/fbem.v9i1.8777

Chandrappa, R., Gupta, S., & Kulshrestha, U. C. (2011). Hazard and risk assessment. Coping with Climate Change, 201–212. https://doi.org/10.1007/978-3-642-19674-4_13

Chang, N. Bin, Lu, J. W., Chui, T. F. M., & Hartshorn, N. (2018). Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy, 70 (June 2016), 368– 383. https://doi.org/10.1016/j.landusepol.2017.11.024

Chen, Y. Y., Chuang, Y. J., Huang, C. H., Lin, C. Y., & Chien, S. W. (2012). The adoption of fire safety management for upgrading the fire safety level of existing hotel buildings. Building and Environment, 51, 311–319. https://doi.org/10.1016/j.buildenv.2011.12.001

Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research, 139, 3–10. https://doi.org/10.1016/j.envres.2015.02.028

Chiu, Y. R., Tsai, Y. L., & Chiang, Y. C. (2015). Designing rainwater harvesting systems cost-effectively in a urban water-energy saving scheme by using a GIS-simulation based design system. Water (Switzerland), 7(11), 6285–6300. https://doi.org/10.3390/w7116285

Cinco, T. A., de Guzman, R. G., D. Ortiz, A. M., Delfino, R. J., Lasco, R. D., Hilario, F. D., Juanillo, E. L., Barba, R., & Ares, E. D. (2016). Observed trends and impacts of tropical cyclones in the Philippines. International Journal of Climatology. https://doi.org/10.1002/joc.4659

Corporal-Lodangco, I. L., & Leslie, L. M. (2016). Climatology of Philippine tropical cyclone activity: 1945–2011. International Journal of Climatology. https://doi.org/10.1002/joc.4931

Costa, H., Floater, G., & Finnegan, J. (2016). Climate-resilient cities. In The Economics of Climate- Resilient Development. https://doi.org/10.4337/9781785360312.00018

CRED. (2019). Now is the time to not give up. Natural Disasters 2019. Brussels. https://cred.be/sites/default/files/adsr_2019.pdf

"Creutin, J. D., & Borga, M. (2003). Radar hydrology modifies the monitoring of flash-flood hazard. Hydrological Processes, 17(7), 1453–1456. https://doi.org/10.1002/hyp.5122

de Bruijn, K. M. (2004). Resilience and flood risk management. Water Policy, 6(1), 53–66. https://doi.org/10.2166/wp.2004.0004

De Carvalho, R. M., & Szlafsztein, C. F. (2019). Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environmental Pollution, 245, 844–852. https://doi.org/10.1016/j.envpol.2018.10.114

Department of Public Works and Highways. (2019). Annual report 2018. In AIMS Mathematics. https://doi.org/10.3934/Math.2019.1.166

Dirk, R. (2013). Frequency analysis of rainfall data. In: College on Soil Physics— 30th Anniversary (1983- 2013), The Abdus Salam International Centre for Theoretical Physica, 244-10. http://indico.ictp.it/event/a12165/session/21/contribution/16/material/0/0.pdf

DOST- PAG-ASA. (n.d.). Climate of the Philippines. https://www.pagasa.dost.gov.ph/information/climate-philippines

Driessen, P. P., Hegger, D. L., Bakker, M. H., van Rijswick, H. F., & Kundzewicz, Z. W. (2016). Toward more resilient flood risk governance. Ecology and Society, 21(4). https://www.jstor.org/stable/26269990

Eriksen, S., & Selboe, E. (2012). The social organization of adaptation to climate variability and global change: the case of a mountain farming community in Norway. Applied Geography, 33(1), 159–167. https://doi.org/10.1016/j.apgeog.2011.10.003

Esguerra, A. T., Madrid, A. E., & Nillo, R. G. (2011). Rainwater harvesting , quality assessment and utilization in Region I. E-International Scientific Research Journal, 3(2), 145–155. http://www.eisrjc.com/documents/Rainwater_Harvesting_1325914607.pdf

ESRI. (2013). Philippines average household size. https://www.arcgis.com/home/item.html?id=5e9a37f7a6734cac9e5c3ec0431e56f3

European Civil Protection and Humanitarian Aid Operations. (2021). ECHO flash. European Union. http://erccportal.jrc.ec.europa.eu/ECHO-Flash

Farreny, R., Gabarrell, X., & Rieradevall, J. (2011). Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods. Resources, Conservation and Recycling, 55(7), 686–694. https://doi.org/10.1016/j.resconrec.2011.01.008

Fewkes, A., & Warm, P. (2000). Method of modelling the performance of rainwater collection systems in the United Kingdom. Building Services Engineering Research and Technology, 21(4), 257–265. https://doi.org/10.1177/014362440002100408

Fournier, M., Larrue, C., Alexander, M., Hegger, D., Bakker, M., Pettersson, M., Crabbé, A., Mees, H., & Chorynski, A. (2016). Flood risk mitigation in Europe: how far away are we from the aspired forms of adaptive governance? Ecology and Society, Published Online: Dec 19, 2016 | Doi:10.5751/ES-08991- 210449, 21(4). https://doi.org/10.5751/ES-08991-210449

Frank, E., Eakin, H., & López-Carr, D. (2011). Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global Environmental Change, 21(1), 66–76. https://doi.org/10.1016/j.gloenvcha.2010.11.001

Franta, B., Roa-Quiaoit, H. A., Lo, D., & Narisma, G. (2016). Climate disasters in the Philippines: a case study of immediate causes and root drivers from Cagayan de Oro, Mindanao and Tropical Storm Sendong/Washi. Environment & Natural Resources Program Belfer Center for Science and International Affairs Harvard Kennedy School, 1–30. https://www.belfercenter.org/sites/default/files/files/publication/Philippines Climate Disasters - final.pdf

Freni, G., & Liuzzo, L. (2019). Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071389

Fresnido, A. M. B., & Esposo-betan, S. M. S. (2018). Going green: sustainable practices in Philippine libraries. IFLA World Library and Information Congress, 1–9. http://library.ifla.org/2173/1/187- fresnido-en.pdf

Froude, M., & Petley, D. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Science. https://doi.org/10.5194/nhess-18-2161-2018

Furumai, H. (2016). Evaluation of rainwater harvesting and use potential considering climate change in Arakawa watershed. Novatech, 1–4. http://documents.irevues.inist.fr/bitstream/handle/2042/60473/3B72-233FUR.pdf

Georgakakos, Konstantine P. (1986). On the design of national, real-time warning systems with capability for site-specific, flash- flood forecasts. Bulletin - American Meteorological Society, 67(10), 1233– 1239. https://doi.org/10.1175/1520-0477(1986)067

Georgakakos, Konstantine P. (2006). Analytical results for operational flash flood guidance. Journal of Hydrology, 317(1–2), 81–103. https://doi.org/10.1016/J.JHYDROL.2005.05.009

Gerolin, A., Kellagher, R. B., & Faram, M. G. (2010). Rainwater harvesting systems for stormwater management : Feasibility and sizing considerations for the UK Utilisation des récupérateurs d ’ eaux de pluie pour le contrôle du ruissellement à la source : faisabilité et méthode de dimensionnement au Royaume-. Novatech, June, 1–10. http://documents.irevues.inist.fr/bitstream/handle/2042/35790/21502-100GER.pdf

Ghisi, E. (2010). Parameters influencing the sizing of rainwater tanks for use in houses. Water Resources Management, 24(10), 2381–2403. https://doi.org/10.1007/s11269-009-9557-4

Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure LK . Built Environment. TA - TT -, 33(1), 115–132. https://slc.on.worldcat.org/oclc/123729317

Golz, S., Naumann, T., Neubert, M., & Günther, B. (2016). Heavy rainfall: An underestimated environmental risk for buildings? E3S Web of Conferences, 7. https://doi.org/10.1051/e3sconf/20160708001

Guan, X., Shen, H., Li, X., Gan, W., & Zhang, L. (2019). A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Science of the Total Environment, 669, 342–352. https://doi.org/10.1016/j.scitotenv.2019.02.361

Hapuarachchi, H. A. P., Wang, Q. J., & Pagano, T. C. (2011). A review of advances in flash flood forecasting. Hydrological Processes, 25(18), 2771–2784. https://doi.org/10.1002/hyp.8040

Helmreich, B., & Horn, H. (2009). Opportunities in rainwater harvesting. Desalination, 248(1–3), 118–

https://doi.org/10.1016/j.desal.2008.05.046

HLURB. (2008). B.P. no. 220, Revised IRR. https://dhsud.gov.ph/wp-content/uploads/Laws_Issuances/02_IRR/Revised_IRR_BP220_2008.pdf

HLURB. (2009). P.D. no. 957, Revised IRR. https://dhsud.gov.ph/wp-content/uploads/Laws_Issuances/02_IRR/IRRPD957.pdf

Hordijk, M., & Baud, I. (2006). The role of research and knowledge generation in collective action and urban governance: How can researchers act as catalysts? Habitat International, 30(3), 668–689. https://doi.org/10.1016/j.habitatint.2005.04.002

Huang, W.-C., & Hsieh, C.-L. (2010). Real-time reservoir flood operation during typhoon attacks. Water Resources Research, 46(7), 7528. https://doi.org/10.1029/2009WR008422

Ibrahim, A., Salifu, A. H., & Peprah, C. (2023). Does governance matter when disaster looms? zooming into proactive institutional measures for flood risk management. International Journal of Disaster Risk Reduction, 97, 104021. https://doi.org/10.1016/j.ijdrr.2023.104021

Ilyasa, F., Rahmayanti, H., Muzani, M., Ichsan, I. Z., & Suhono, S. (2020). Environmental education for prevent disaster: a survey of students knowledge in beginning new normal of COVID-19. International Journal on Advanced Science Education and Religion. https://doi.org/10.33648/ijoaser.v3i2.60

Imteaz, M. A., Adeboye, O. B., Rayburg, S., & Shanableh, A. (2012). Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resources, Conservation and Recycling, 62, 51–55. https://doi.org/10.1016/j.resconrec.2012.02.007

Imteaz, M. A., Ahsan, A., Naser, J., & Rahman, A. (2011). Reliability analysis of rainwater tanks in Melbourne using daily water balance model. Resources, Conservation and Recycling, 56(1), 80–86. https://doi.org/10.1016/j.resconrec.2011.09.008

Ishak, H. N., & Hashim, M. A. (2018). Dam pre-release as an important operation strategy in reducing flood impact in Malaysia. E3S Web of Conferences, 34, 1–6. https://doi.org/10.1051/e3sconf/20183402017

Islam, M. M., N-F Chou, F., Kabir, M. R., & N-F Chou, Á. F. (2011). Feasibility and acceptability study of rainwater use to the acute water shortage areas in Dhaka City, Bangladesh. Natural Hazards (Springer) 56, 93–111. https://doi.org/10.1007/s11069-010-9551-4

Jamali, B., Bach, P. M., & Deletic, A. (2020). Rainwater harvesting for urban flood management – an integrated modelling framework. Water Research, 171, 115372. https://doi.org/10.1016/j.watres.2019.115372

Jameson, S., & Baud, I. (2016). Varieties of knowledge for assembling an urban flood management governance configuration in Chennai, India. Habitat International, 54, 112–123. https://doi.org/10.1016/j.habitatint.2015.12.015

Jha, S., Martinez, A., Quising, P., Ardaniel, Z., & Wang, L. (2018). ADBI working paper series natural disasters, public spending, and creative destruction: a case study of the Philippines. Asian Development Bank Institute. 817. https://www.adb.org/publications/natural-disasters-public-spending-and-creative- destruction-

Johnson, L. R., Trammell, T. L., Bishop, T. J., Barth, J., Drzyzga, S., & Jantz, C. (2020). Squeezed from all sides: urbanization, invasive species, and climate change threaten riparian forest buffers. Sustainability, 12(4), 1448. https://doi.org/10.3390/su12041448

Jonkman, S. N., & Kelman, I. (2005). An analysis of the causes and circumstances of flood disaster deaths.

Disasters, 29(1), 75–97. https://doi.org/10.1111/j.0361-3666.2005.00275.x

Khaerani, T. R. (2022). The role of local government in disaster management (study on the regional disaster management agency in flood disaster mitigation in Samarinda city). Cosmogov. https://doi.org/10.24198/cosmogov.v8i1.33118

Khastagir, A., & Jayasuriya, N. (2010). Optimal sizing of rain water tanks for domestic water conservation. Journal of Hydrology, 381(3–4), 181–188. https://doi.org/10.1016/j.jhydrol.2009.11.040

Kim, K., & Yoo, C. (2009). Hydrological Modeling and Evaluation of Rainwater Harvesting Facilities: Case Study on Several Rainwater Harvesting Facilities in Korea. Journal of Hydrologic Engineering, 14(6), 545–561. https://doi.org/10.1061/(asce)he.1943-5584.0000030

Kinkade-Levario, H. (2007). Design for water: rainwater harvesting, stormwater catchment, and alternate water reuse. In New Society Publishers (Vol. 1, Issue 1). https://doi.org/10.1080/14486563.2014.960058

Kubanek, J. (2017). Optimal decision making and matching are tied through diminishing returns. Proceedings of the National Academy of Sciences, 114(32), 8499-8504. https://doi.org/10.1073/pnas.1703440114

Langousis, A., & Veneziano, D. (2007). Intensity-duration-frequency curves from scaling representations of rainfall. Water Resources. Res, 43, 2422. https://doi.org/10.1029/2006WR005245

Li, G. F., Xiang, X. Y., Tong, Y. Y., & Wang, H. M. (2013). Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stochastic Environmental Research and Risk Assessment, 27(7), 1683– 1693. https://doi.org/10.1007/s00477-013-0706-1

Liao, K. H. (2012). A theory on urban resilience to floods-A basis for alternative planning practices. Ecology and Society, 17(4). https://doi.org/10.5751/ES-05231-170448

Liu, J., Byrne, D., & Devendorf, L. (2018). Design for collaborative survival: an inquiry into human-fungi relationships. Conference on Human Factors in Computing Systems - Proceedings, 2018-April, 1–13. https://doi.org/10.1145/3173574.3173614

Lo, A. Y., Xu, B., Chan, F. K. S., & Su, R. (2015). Social capital and community preparation for urban flooding in China. Applied Geography, 64, 1–11. https://doi.org/10.1016/j.apgeog.2015.08.003

Lopes, V. A. R., Marques, G. F., Dornelles, F., & Medellin-Azuara, J. (2017). Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. Journal of Cleaner Production, 148, 304–313. https://doi.org/10.1016/j.jclepro.2017.01.132

Lu, Z., Sun, L., & Zhou, Y. (2021). A method for rainfall detection and rainfall intensity level retrieval from x‐band marine radar images. Applied Sciences (Switzerland), 11(4), 1–22. https://doi.org/10.3390/app11041565

Lusiana, N. A., & Widiyarta, A. (2021). Disaster mitigation as an effort to minimize the impact of floods in Lamongan District. Dia Jurnal Ilmiah Administrasi Publik. https://doi.org/10.30996/dia.v19i1.5160

Madden, I., Mariwala, A., Lindhart, M., Narayan, S., Arkema, K. K., Beck, M. W., Baker, J. W., & Suckale, J. (2023). Quantifying the fragility of coral reefs to hurricane impacts: a case study of the Florida Keys and Puerto Rico. Environmental Research Letters. https://doi.org/10.1088/1748-9326/acb451

Mahmoud, S. H., & Gan, T. Y. (2018). Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping. Science of the Total Environment, 636, 152–167. https://doi.org/10.1016/j.scitotenv.2018.04.282

Mahmoudi, A., & Feylizadeh, M. R. (2018). A grey mathematical model for crashing of projects by considering time, cost, quality, risk and law of diminishing returns. Grey Systems: Theory and Application, 8(3), 272-294. https:/doi/10.1108/GS-12-2017-0042

Marfai, M. A., King, L., Sartohadi, J., Sudrajat, S., Budiani, S. R., & Yulianto, F. (2008). The impact of tidal flooding on a coastal community in Semarang, Indonesia. Environmentalist, 28(3), 237–248. https://doi.org/10.1007/s10669-007-9134-4

Matos, C., Bentes, I., Santos, C., Imteaz, M., & Pereira, S. (2015). Economic analysis of a rainwater harvesting system in a commercial building. Water Resources Management, 29(11), 3971–3986. https://doi.org/10.1007/s11269-015-1040-9

Matos, C., Santos, C., Pereira, S., Bentes, I., & Imteaz, M. (2013). Rainwater storage tank sizing: case study of a commercial building. International Journal of Sustainable Built Environment, 2(2), 109–118. https://doi.org/10.1016/j.ijsbe.2014.04.004

McCoy, D., Montgomery, H., Arulkumaran, S., & Godlee, F. (2014). Climate change and human survival. BMJ (Online), 348(March), 1–2. https://doi.org/10.1136/bmj.g2351

Medina, M. A. P., & Catalon, B. G. (2015). Reducing our ecological footprint: developing sustainability scenarios for the College of Forestry and Environmental Science, Central Mindanao University. Researchgate.Net, 4(July), 1–6. https://www.researchgate.net/profile/Michael_Arieh_Medina/publication/282231832_Reducing_our_Ecological_Footprint_Developing_Sustainability_Scenarios_for_the_College_of_Forestry_and_Envi ronmental_Science_Central_Mindanao_University_Philippines/links/564d8

Melville-Shreeve, P., Ward, S., & Butler, D. (2016). Rainwater harvesting typologies for UK houses: a multi criteria analysis of system configuration. In Water Resources Research Institute of The University of North Carolina (Issue 425). https://doi.org/https://doi.org/10.3390/w8040129

Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater run-off problem in the urbanized 21st century? Landscape and Urban Planning, 77(3), 217–226. https://doi.org/10.1016/j.landurbplan.2005.02.010

Moghayedi, A., Awuzie, B., Omotayo, T., Jeune, K., Massyn, M., Ekpo, C., … & Byron, P. (2021). A critical success factor framework for implementing sustainable innovative and affordable housing: a systematic review and bibliometric analysis. Buildings, 11(8), 317. https://doi.org/10.3390/buildings11080317

Moruzzi, R. B., Garcia, M. L., & Oliveira, S. C. de. (2012). A proposal for reservoir volume calculation in rainwater harvesting systems. Journal of Civil Engineering and Architecture, 6(6), 707–714. https://doi.org/10.17265/1934-7359/2012.06.008

National Disaster Risk Reduction and Management Council (NDRRMC). (2015). Philippines national progress report on the implementation of the Hyogo framework for action (2013-2015) organization: National Disaster Risk Reduction & Management Council Title/Position: OCD-NDRRMC. April. http://www.preventionweb.net/english/hyogo/progress/reports/

Newman, P. (2006). The environmental impact of cities. Environment and Urbanization, 18(2), 275–295. https://doi.org/10.1177/0956247806069599

Nguyen, D. C., & Han, M. Y. (2017). Proposal of simple and reasonable method for design of rainwater harvesting system from limited rainfall data. Resources, Conservation and Recycling, 126(July), 219–227. https://doi.org/10.1016/j.resconrec.2017.07.033

Nguyen, V. M., Ichikawa, Y., & Ishidaira, H. (2018). Exploring optimal tank size for rainwater harvesting systems in asian tropical climates. Hydrological Research Letters, 12(1), 1–6. https://doi.org/10.3178/hrl.12.1

Noor, N. M., & Abdul Maulud, K. N. (2022). Coastal vulnerability: A brief review on integrated assessment in southeast Asia. Journal of Marine Science and Engineering, 10(5), 595. https://doi.org/10.3390/jmse10050595"

Nurjanah, A., & Apriliani, R. (2021). The role of community in disaster mitigation: the case of Umbulharjo Merapi monitoring community on Merapi Mount, Indonesia. Jurnal Hubungan Internasional. https://doi.org/10.18196/jhi.v10i1.12460

Okaka, F. O., & Odhiambo, B. (2018). Relationship between flooding and out break of infectious diseases in Kenya: A review of the literature. Journal of environmental and public health, 2018. https://doi.org/10.1155/2018/5452938

Olanrewaju, A. and Idrus, A. (2019). What is determining affordable housing shortages in the greater Kuala Lumpur, Malaysia?. Property Management, 38(1), 52-81. https://doi.org/10.1108/pm-05-2019-0025

Pachpute, J. S., Tumbo, · S D, Sally, · H, Mul, M. L., & Tumbo, S. D. (2009). Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resources Management, 23, 2815–2839. https://doi.org/10.1007/s11269-009-9411-8

Pandey, B., & Seto, K. C. (2015). Urbanization and agricultural land loss in India: comparing satellite estimates with census data. Journal of Environmental Management, 148, 53–66. https://doi.org/10.1016/j.jenvman.2014.05.014

Pelak, N., & Porporato, A. (2016). Sizing a rainwater harvesting cistern by minimizing costs. Journal of Hydrology, 541, 1340–1347. https://doi.org/10.1016/j.jhydrol.2016.08.036

Philippine Atmospheric, Geophysical and Astronomical Services Administration. (n. d.) Weather terminologies. Republic of the Philippines. Accessed from http://bagong.pagasa.dost.gov.ph/information/weather-terminologies on August 30, 2021.

Pramudita, A. J. N., & Nugroho, J. (2021). Post-Pandemic Community Resilience: Community and Economic Conditions of Wedi Village. https://doi.org/10.2991/aebmr.k.210628.049

Qin, Y. (2020). Urban flooding mitigation techniques: a systematic review and future studies. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123579

Rapant, P., & Kolejka, J. (2021). Dynamic pluvial flash flooding hazard forecast using weather radar data.

Remote Sensing, 13, 2943. https://doi.org/https://doi.org/10.3390/rs13152943

Rappaport, E. N. (2000). Loss of life in the United States associated with recent Atlantic tropical cyclones. Bulletin of the American Meteorological Society, 81(9), 2065–2073. https://doi.org/10.1175/1520- 0477(2000)081

Roebuck, R. M., Oltean-Dumbrava, C., & Tait, S. (2011). Whole life cost performance of domestic rainwater harvesting systems in the United Kingdom. Water and Environment Journal, 25(3), 355–365. https://doi.org/10.1111/j.1747-6593.2010.00230.x

Saleh, A., Majid, R., Rahim, N., & Omar, M. (2022). Housing supply model for affordable homes in malaysia. Environment-Behaviour Proceedings Journal, 7(22), 127-133. https://doi.org/10.21834/ebpj.v7i22.4159

Sayers, P., Galloway, G., Penning-rowsell, E., Shen, F., Kang, W., Yiwei, C., & Le Quesne, T. (2013). Flood risk management a strategic approach: part of a series on strategic water management. In Water and Sewerage Journal. https://bit.ly/2TkeZHz

Schumacher, R. S. (2017). Heavy rainfall and flash flooding. In Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389407.013.132

Semaan, M., Day, S. D., Garvin, M., Ramakrishnan, N., & Pearce, A. (2020). Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Conservation & Recycling: X,Volume 6, 2020 https://doi.org/10.1016/j.rcrx.2020.100033

Shi, C., Liao, L., Li, H., & Su, Z. (2022). Which urban communities are susceptible to COVID-19? an empirical study through the lens of community resilience. BMC Public Health. https://doi.org/10.1186/s12889-021-12419-8

Starominski-Uehara, M. (2020). How structural mitigation shapes risk perception and affects decision‐ making. Disasters. https://doi.org/10.1111/disa.12412

Sulaiman, N., She, T. W., & Fernando, T. (2019). Community resilience frameworks for building disaster resilient community in Malaysia. Planning Malaysia. https://doi.org/10.21837/pmjournal.v17.i9.589

Swiss NGO DRR. (2014). Disaster risk reduction and management in the Philippines. July, 1–32. CARITAS. https://www.shareweb.ch/site/DRR/Documents/About%20Us/Risk_Assessment_Philippines_2014.pdf

Tan, G. H. (2023). Analysis of strategies for mitigation and adaptation to the impacts of climate change in the agricultural sector in Northern Philippines. Ryerson University: Theses and dissertations. https://doi.org/10.32920/ryerson.14644512

Teston, A., Geraldi, M. S., Colasio, B. M., & Ghisi, E. (2018). Rainwater harvesting in buildings in Brazil: A literature review. In Water (Switzerland) (Vol. 10, Issue 4). https://doi.org/10.3390/w10040471

Thomalla, F., Boyland, M., & Calgaro, E. (2017). Disasters and development in Southeast Asia toward equitable resilience and sustainability. In Routledge Handbook of Southeast Asian Development (pp. 342-361). Routledge. http://doi.org/10.4324/9781315726106-30

Thomas, T. H., & Martinson, D. B. (2007). Roofwater harvesting: a handbook for practitioners. IRC International Water and Sanitation Centre.

Torti, J. (2012). Floods in Southeast Asia: a health priority. Journal of global health, 2(2). http://doi.org/10.7189/jogh.02.020304

Tubog, M. V., Villahermosa, R. L., & Perong, J. G. (2023). Landslide susceptibility modeling derived from remote sensing, multi-criteria decision analysis, and GIS techniques: a case study in the Southeast Bohol Province, Philippines. Research Square. https://doi.org/10.21203/rs.3.rs-2547208/v1

Unite, B. (2021, July 14). DPWH's efforts in CARAGA lead to construction, fixing of over 1,300 km of roads – Manila Bulletin. Manila Bulletin. https://mb.com.ph/2021/07/14/dpwhs-efforts-in-caraga- leads-to-construction-fixing-of-over-1300-km-of-roads/

United Nations. (2021). Water-related hazards dominate list of 10 most destructive disasters. UN News - Global Perspective Human Stories. https://news.un.org/en/story/2021/07/1096302

Uwayezu, E. and Vries, W. (2020). Access to affordable houses for the low-income urban dwellers in kigali: analysis based on sale prices. Land, 9(3), 85. https://doi.org/10.3390/land9030085

Vaes, G., & Berlamont, J. (2001). The effect of rainwater storage tanks on design storms. Urban Water, 3(4), 303–307. https://doi.org/10.1016/S1462-0758(01)00044-9

Vale, L. J. (2014). The politics of resilient cities: whose resilience and whose city?. Building Research & Information, 42(2), 191-201. https://doi.org/10.1080/09613218.2014.850602

Valeriano, O. C. S., Koike, T., Yang, K., Graf, T., Li, X., Wang, L., & Han, X. (2010). Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts. Water Resources Research, 46(10), 10544. https://doi.org/10.1029/2010WR009502

Vårheim, A., Skare, R., Lenstra, N., Latham, K. F., & Grenersen, G. (2018). A research program for studying LAMs and community in the digital age. Proceedings From the Document Academy. https://doi.org/10.35492/docam/5/2/12

Viseu, T., & Almeida, A. B. de. (2009). Ecopath with ecosim: linking fisheries and ecology 1 why ecosystem modeling in fisheries? WIT Transactions on State of the Art in Science and Engineering, 36, 1755–8336. https://doi.org/10.2495/978-1-84564- 2- /14906

Vojinovic, Z., Alves, A., Gómez, J. P., Weesakul, S., Keerakamolchai, W., Meesuk, V., & Sanchez, A. (2021). Effectiveness of small- and large-scale nature-based solutions for flood mitigation: the case of Ayutthaya, Thailand. Science of the Total Environment, 789.

https://doi.org/10.1016/j.scitotenv.2021.147725

Wang, Q., Wang, W., He, X., Zhou, W., Zhai, C., Wang, P., Tang, Z., Wei, C., Zhang, B., Xiao, L., & Wang, H. (2019). Urbanization-induced glomalin changes and their associations with land-use configuration, forest characteristics, and soil properties in Changchun, Northeast China. Journal of Soils and Sediments, 19(5), 2433–2444. https://doi.org/10.1007/s11368-019-02266-x

Warsilah, H., & Choerunnisa, S. N. (2023). Climate change and flood: vulnerability and community resilience. In Climate Change, Community Response and Resilience (pp. 345-360). Elsevier. https://doi.org/10.1016/B978-0-443-18707-0.00018-7

World Bank. (2019). Learning from Japan's experience in integrated urban flood risk management: a series of knowledge notes knowledge note 1: assessing and communicating urban flood risk. https://policycommons.net/artifacts/1263270/learning-from-japans-experience-in-integrated-urban- flood-risk-management/1837543/

World Meteorological Organization. (2021). Water-related hazards dominate disasters in the past 50 years. https://public.wmo.int/en/media/press-release/water-related-hazards-dominate-disasters-past-50-years

Xu, W. D., Fletcher, T. D., Burns, M. J., & Cherqui, F. (2020). Real time control of rainwater harvesting systems: the benefits of increasing rainfall forecast window. Water Resources Research, 56(9), 1–16. https://doi.org/10.1029/2020WR027856

Yonson, R. (2018). Floods and pestilence: diseases in Philippine urban areas. EconDisCliCha 2, 107–135. https://doi.org/10.1007/s41885-017-0021-2

Yonson, R. (2019). Disaster risk management policies and the measurement of resilience for Philippine regions. Risk Analysis. https://doi.org/10.1111/risa.13394

Zamboni, L. M. (2017). Theory and metrics of community resilience: a systematic literature review based on public health guidelines. Disaster Medicine and Public Health Preparedness. https://doi.org/10.1017/dmp.2017.22

Zevenbergen, C., Gersonius, B., & Radhakrishan, M. (2020). Flood resilience. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2168). https://doi.org/10.1098/rsta.2019.0212

Zhang, H., Ma, W., & Wang, X. (2008). Rapid urbanization and implications for flood risk management in hinterland of the Pearl River Delta, China: The Foshan Study. Sensor, 8, 2223–2239. https://doi.org/doi:10.3390/s8042223

Zhang, X., & Hu, M. (2014). Effectiveness of rainwater harvesting in run-off volume reduction in a planned industrial park, China. Water Resources Management, 28(3), 671–682. https://doi.org/10.1007/s11269-013-0507-9

Downloads

Published

01-07-2024

Versions

How to Cite

Pantaleon, Jr, A. G., Pantaleon, F. G., Lincuna, J. R. S., & Jovero , L. I. D. . (2024). Flooding Resiliency of Surigao del Sur, Caraga Region, Philippines Residences Through Rainwater Catchment and Storage System. Built Environment Journal, 21(2), 27–54. https://doi.org/10.24191/bej.v21i2.479