Big Data Analytics Adoption in Malaysia Digital Status Companies: The Moderating Role of Training

Authors

  • Nur Khairiah Muhammad School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
  • Nor Hasni Osman School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
  • Nurul Azita Salleh School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia

DOI:

https://doi.org/10.24191/jikm.v15i1.4418

Abstract

This study investigates the factors influencing Big Data adoption and their impact on organizational performance within Malaysia Digital Status Companies, focusing on the Global Business Services (GBS) sector. Grounded by Technology-Organization-Environment (TOE) framework and Resource-Based View (RBV) theory, the study examines the role of data quality management, data security, ease of use, and top management support, along with the moderating effect of training on these relationships. Data were collected via an online survey, resulting 272 responses using a combination of simple random and convenience sampling. The hypotheses were tested using Partial Least Squares Structural Equation Modelling (PLS-SEM). From the analysis, four hypotheses were empirically supported, another four hypotheses were empirically not supported. This study provides insights into managing Big Data adoption challenges and advancing Malaysia's digital transformation.

References

Ahmed, M., Roessing, C., Singh, P., Hogan, G., & Helfert, M. (2024). Improving Data Value and its Influence on Decision Making through Better Data Frameworks and Management. CEUR Workshop Proceedings, 3855.

Ajah, I. A., & Nweke, H. F. (2019). Big data and business analytics: Trends, platforms, success factors and applications. Big Data and Cognitive Computing, 3(2), 1–30. https://doi.org/10.3390/bdcc3020032

Akbari, M. (2024). Outsourcing: Optimizing Supply Chain Management for Efficiency and Growth BT - The Road to Outsourcing 4.0: Next-Generation Supply Chain (M. Akbari (ed.); pp. 21–47). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2708-7_2

Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182. https://doi.org/10.1016/j.ijpe.2016.08.018

Al-Khasawneh, A. L., Almaiah, M. A., Alshira’h, A. F., Alshirah, M. H., Alsyouf, A., Alrawad, M., Saad, M., & Ali, R. Al. (2022). Antecedents of Big Data Analytic Adoption and Impacts on Performance: Contingent Effect. Sustainability (Switzerland), 14(23), 1–23. https://doi.org/10.3390/su142315516

Al-madhrahi, Z., Singh, D., & Yadegaridehkordi, E. (2022). Integrating Big Data Analytics into Business Process Modelling : Possible Contributions and Challenges. 13(6), 461–468.

Al-Rahmi, W. M., Yahaya, N., Aldraiweesh, A. A., Alturki, U., Alamri, M., Bin Saud, M. S., Kamin, Y. Bin, Aljeraiwi, A. A., & Alhamed, O. A. (2019). Big Data Adoption and Knowledge Management Sharing: An Empirical Investigation on Their Adoption and Sustainability as a Purpose of Education. IEEE Access, 7, 47245–47258. https://doi.org/10.1109/ACCESS.2019.2906668

Alfred, R. (2019). Big data : issues , trends , problems , controversies in ASEAN perspective. 3(2), 80–93.

Ali, B. J. A. (2023). Information Quality and Data Quality in Accounting Information System : Implications on the Organization Performance. April 2020. https://doi.org/10.37200/IJPR/V24I5/PR202034

Alsyouf, A., Almaiah, M. A., Alrawad, M., Abdo, A. A. K., Al-Khasawneh, A. L., Ibrahim, N., & Saad, M. (2022). Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability (Switzerland), 14(3). https://doi.org/10.3390/su14031802

Alzahrani, L., & Seth, K. P. (2021). The impact of organizational practices on the information security management performance. Information (Switzerland), 12(10). https://doi.org/10.3390/info12100398

Amalina, F., Abaker, I., Hashem, T., Azizul, Z. H., Fong, A. T., Firdaus, A., Imran, M., & Anuar, N. B. (2019). Blending Big Data Analytics : Review on Challenges and a Recent Study. IEEE Access, PP(June), 1. https://doi.org/10.1109/ACCESS.2019.2923270

Amoresano, K., & Yankson, B. (2023). Human Error - A Critical Contributing Factor to the Rise in Data Breaches: A Case Study of Higher Education. HOLISTICA – Journal of Business and Public Administration, 14(1), 110–132. https://doi.org/10.2478/hjbpa-2023-0007

Anawar, S., Othman, N. F., Selamat, S. R., Ayop, Z., Harum, N., & Rahim, F. A. (2022). Security and Privacy Challenges of Big Data Adoption: A Qualitative Study in Telecommunication Industry. International Journal of Interactive Mobile Technologies, 16(19), 81–97. https://doi.org/10.3991/ijim.v16i19.32093

Anwar, M. J., Gill, A. Q., Hussain, F. K., & Imran, M. (2021). Secure big data ecosystem architecture : challenges and solutions. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-021-01996-2

Arunachalam, D., & Kumar, N. (2018). Understanding Big Data Analytics capabilities in supply chain management : Unravelling the issues , challenges and implications for practice.

Asif, R., & Hassan, S. R. (2023). Exploring the Confluence of IoT and Metaverse: Future Opportunities and Challenges. Internet of Things, 4(3), 412–429. https://doi.org/10.3390/iot4030018

Asiri, A. M., Al-Somali, S. A., & Maghrabi, R. O. (2024a). The Integration of Sustainable Technology and Big Data Analytics in Saudi Arabian SMEs: A Path to Improved Business Performance. Sustainability, 16(8), 3209. https://doi.org/10.3390/su16083209

Asiri, A. M., Al-Somali, S. A., & Maghrabi, R. O. (2024b). The Integration of Sustainable Technology and Big Data Analytics in Saudi Arabian SMEs: A Path to Improved Business Performance. Sustainability (Switzerland) , 16(8). https://doi.org/10.3390/su16083209

Baharuden, A. F., Isaac, O., & Ameen, A. (2019a). Factors Influencing Big Data & Analytics ( BD & A ) Learning Intentions with Transformational Leadership as Moderator Variable : Malaysian SME Perspective. 3(1), 10–20.

Baharuden, A. F., Isaac, O., & Ameen, A. (2019b). Learning Intentions with Transformational Leadership as Moderator Variable: Malaysian SME Perspective. International Journal of Management and Human Science (IJMHS), 3(1), 10–20.

Baig, M. I., Shuib, L., & Yadegaridehkordi, E. (2019). Big data adoption: State of the art and research challenges. Information Processing and Management, 56(6). https://doi.org/10.1016/j.ipm.2019.102095

Barney, J. (1991). Firm resources and sustained competitive advantage. In Journal of Management (Vol. 17, Issue 1, pp. 99–120). https://doi.org/10.1177/014920639101700108

CADS. (2024). The Center of Applied Data Science. Wikipedia. https://en.wikipedia.org/wiki/The_Center_of_Applied_Data_Science

Christopher, T., & Nelson, K. (2024). Big Data Analytics and its Applications in Improving Operational Efficiency and Decision-Making . A Case Study of Central Business District ( CBD ). 8(8), 54–58.

Chuah, M. H., & Thurusamry, R. (2021). Challenges of big data adoption in Malaysia SMEs based on Lessig’s modalities: A systematic review. Cogent Business and Management, 8(1), 1–8. https://doi.org/10.1080/23311975.2021.1968191

Chui, M., Hall, B., Singla, A., & Sukharevsky, A. (2021). McKinsey & Company - The state of AI in 2021. December, 11.

Coombes, L., Bristowe, K., Ellis-Smith, C., Aworinde, J., Fraser, L. K., Downing, J., Bluebond-Langner, M., Chambers, L., Murtagh, F. E. M., & Harding, R. (2021). Enhancing validity, reliability and participation in self-reported health outcome measurement for children and young people: a systematic review of recall period, response scale format, and administration modality. Quality of Life Research, 30(7), 1803–1832. https://doi.org/10.1007/s11136-021-02814-4

Côrte-Real, N., Ruivo, P., & Oliveira, T. (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information and Management, 57(1). https://doi.org/10.1016/j.im.2019.01.003

Davenport, T. H. (2019). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234X.2018.1543535

Davis, F. D. (1989). Perceived Usefulness , Perceived Ease Of Use , And User Acceptance. MIS Quarterly, 13(3), 319–339. https://doi.org/10.2307/249008

Dias, M. N. R. (2021). The Impact of Big Data Utilisation on Malaysian Government Hospital Performance.

Dias, M. N. R., Hassan, S., & Shahzad, A. (2021). the Impact of Big Data Utilization on Malaysian Government Hospital Healthcare Performance. International Journal of EBusiness and EGovernment Studies, 13(1), 50–77. https://doi.org/10.34111/ijebeg.202113103

Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2021). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research, 59(1), 110–128. https://doi.org/10.1080/00207543.2019.1582820

Economic Planning Unit. (2021). Malaysia Digital Economy Blueprint (MyDIGITAL). In Economic Planning Unit, Prime Minister Department, Putrajaya. Economic PLanning Unit, Prime Minister’s Department.

El-Haddadeh, R., Osmani, M., Hindi, N., & Fadlalla, A. (2021). Value creation for realising the sustainable development goals: Fostering organisational adoption of big data analytics. Journal of Business Research, 131. https://doi.org/10.1016/j.jbusres.2020.10.066

Falahat, M., Cheah, P. K., Jayabalan, J., Lee, C. M. J., & Kai, S. B. (2023). Big Data Analytics Capability Ecosystem Model for SMEs. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010360

Fatt, Q. K., & Ramadas, A. (2018). The Usefulness and Challenges of Big Data in Healthcare. Journal of Healthcare Communications, 03(02), 1–4. https://doi.org/10.4172/2472-1654.100131

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2013). G*Power 3. In Heinrich-Heine University - Institute for Experimental Psychology.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1). https://doi.org/10.1177/002224378101800104

Fosso Wamba, S., Akter, S., & de Bourmont, M. (2019). Quality dominant logic in big data analytics and firm performance. Business Process Management Journal, 25(3), 512–532. https://doi.org/10.1108/BPMJ-08-2017-0218

Garavan, T. (2020). Training and Organizational Performance: A Meta-Analysis of Temporal, Institutional and Organizational Context Moderators. 1–45.

Ghaleb, E. A. A., Dominic, P. D. D., Fati, S. M., Muneer, A., & Ali, R. F. (2021). The assessment of big data adoption readiness with a technology–organization–environment framework: A perspective towards healthcare employees. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158379

Ghaleb, E. A. A., Dominic, P. D. D., Singh, N. S. S., & Naji, G. M. A. (2023). Assessing the Big Data Adoption Readiness Role in Healthcare between Technology Impact Factors and Intention to Adopt Big Data. Sustainability (Switzerland), 15(15), 1–25. https://doi.org/10.3390/su151511521

Ghasemaghaei, M. (2020). The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage. International Journal of Information Management, 50. https://doi.org/10.1016/j.ijinfomgt.2018.12.011

Ghasemaghaei, M., & Calic, G. (2019). Can big data improve firm decision quality ? The role of data quality and data diagnosticity. Decision Support Systems, 120(December 2018), 38–49. https://doi.org/10.1016/j.dss.2019.03.008

Grover, V., Chiang, R. H. L., Liang, T. P., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2). https://doi.org/10.1080/07421222.2018.1451951

Gutterman, A. (2023). Organizational Performance and Effectiveness. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4532570

Haddad, A., Ameen, A., Isaac, O., Bhaumik, A., & Midhunchakkaravarthy E a, D. (2019). Factors that Influence the Net Benefits of Big Data Adoption within Government Agencies in the UAE. International Journal of Control and Automation, 12(6), 841–860.

Hadidi, R., & Power, D. J. (2020). Journal of the Midwest Association for Information Systems Technology Adoption and Disruption -- Organizational Implications for the Future of Work. 2020(1), 1–8.

Hafizal Ishak, M., Muhammad Idham Wan Mahdi, W., Wei Lun, P., & Md Yassin, A. (2023). Big Data Analytics Implementation Readiness Among Malaysian Facilities Management Companies. Research in Management of Technology and Business, 4(2), 627–639. http://publisher.uthm.edu.my/proceeding/index.php/rmtb

Hair, F. J., Black C., W., Babin, J. B., & Anderson, E. R. (2014). Multivariate Data Analysis. E-Jurnal Manajemen Unud, 5(2), 88. http://e-journal.president.ac.id/presunivojs/index.php/JAAF/article/download/363/207

Hair, J. F. (2009). Multivariate Data Analysis. Multivariate Data Analysis.

Hanafizadeh, P., & Zareravasan, A. (2020). A Systematic Literature Review on IT Outsourcing Decision and Future Research Directions. Journal of Global Information Management, 28(2), 160–201. https://doi.org/10.4018/jgim.2020040108

Hashim, H., Diana, F., Bahry, S., & Shahibi, M. S. (2021). Conceptualizing the Relationship between Big Data Adoption ( BDA ) Factors and Organizational Impact ( OI ). 11(1), 128–142.

Hashim, H., Shahibi, M. S., & Bahry, F. D. S. (2022). A TOE Approach for Big Data Adoption Factors Towards Organizational Impact in the Malaysia’s GLAs: A Conceptual Review. International Journal of Academic Research in Business and Social Sciences, 12(6), 1554–1565. https://doi.org/10.6007/ijarbss/v12-i6/13892

Huynh, M. T., Nippa, M., & Aichner, T. (2023). Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research. Technological Forecasting and Social Change, 197(February), 122884. https://doi.org/10.1016/j.techfore.2023.122884

Ibrahim Ahmed, I. N., Adullah, L. M. A., & Mohd. Nor, R. Bin. (2023). Rationalising Factors Influencing the Effective Utilisation of Big Data in Malaysian Fintech Companies. International Journal of Management and Applied Research, 10(1), 45–62. https://doi.org/10.18646/2056.101.23-004

Ijab, M. T., Salwana, E., Surin, M., & Nayan, N. M. (2019). Conceptualizing Big Data Quality Framework From a Systematic. 25–37.

Iranmanesh, M., Lim, K. H., Foroughi, B., Hong, M. C., & Ghobakhloo, M. (2023). Determinants of intention to adopt big data and outsourcing among SMEs: organisational and technological factors as moderators. Management Decision, 61(1), 201–222. https://doi.org/10.1108/MD-08-2021-1059

Kalra, D. (2020). Scaling up the Big Health Data Ecosystem: Engaging all Stakeholders! Journal of the International Society for Telemedicine and EHealth, 8. https://doi.org/10.29086/jisfteh.8.e16

Kamarulzaman, M. S., & Hassan, N. H. (2019). A Review on Factors for Big Data Adoption towards Industry 4.0. Open International Journal of Informatics (OIJI), 7(2).

Khong, I., Yusuf, N. A., Nuriman, A., & Yadila, A. B. (2023). Exploring the Impact of Data Quality on Decision-Making Processes in Information Intensive Organizations. 7(3).

Kim, H. Y., & Cho, J. S. (2018). Data governance framework for big data implementation with NPS Case Analysis in Korea. Journal of Business and Retail Management Research, 12(3), 36–46. https://doi.org/10.24052/jbrmr/v12is03/art-04

Kim, K.-S. (2021). Impact of Covid-19 on Survey Methods and Challenges. American Journal of Biomedical Science & Research, 14(4). https://doi.org/10.34297/ajbsr.2021.14.002011

Krejcie, R. V, & Morgan, D. W. (1970). Determining Sample Size for Research Activities Robert. Educational and Psychological Measurement, 38(1), 607–610. https://doi.org/10.1177/001316447003000308

Krishnan, S. G., Al-Nahari, A., Ismail, N. A., & Yao, D. N. L. (2023). Enhancing Cybersecurity Awareness among Banking Employees in Malaysia: Strategies, Implications, and Research Insights. International Journal of Academic Research in Business and Social Sciences, 13(8), 596–612. https://doi.org/10.6007/ijarbss/v13-i8/17413

Loh, C.-H., & Teoh, A.-P. (2021). The Adoption of Big Data Analytics Among Manufacturing Small and Medium Enterprises During Covid-19 Crisis in Malaysia. Proceedings of the Ninth International Conference on Entrepreneurship and Business Management (ICEBM 2020), 174. https://doi.org/10.2991/aebmr.k.210507.015

Mahmood, Q. U. A., Ahmed, R., & Philbin, S. P. (2023). The moderating effect of big data analytics on green human resource management and organizational performance. International Journal of Management Science and Engineering Management, 18(3), 177–189. https://doi.org/10.1080/17509653.2022.2043197

Majnoor, N., & Vinayagam, K. (2023). the Ascendency of the Paradigm Shift From Organizational Change Management To Change Agility. International Journal of Professional Business Review, 8(4), 1–16. https://doi.org/10.26668/businessreview/2023.v8i4.1151

Mangla, S. K., Raut, R., Narwane, V. S., Zhang, Z., & priyadarshinee, P. (2020). Mediating effect of big data analytics on project performance of small and medium enterprises. Journal of Enterprise Information Management, 34(1), 168–198. https://doi.org/10.1108/JEIM-12-2019-0394

Maroufkhani, P., Tseng, M. L., Iranmanesh, M., Ismail, W. K. W., & Khalid, H. (2020). Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. International Journal of Information Management, 54. https://doi.org/10.1016/j.ijinfomgt.2020.102190

Maroufkhani, P., Wagner, R., Wan Ismail, W. K., Baroto, M. B., & Nourani, M. (2019). Big data analytics and firm performance: A systematic review. Information (Switzerland), 10(7), 1–21. https://doi.org/10.3390/INFO10070226

Maroufkhani, P., Wan Ismail, W. K., & Ghobakhloo, M. (2020). Big data analytics adoption model for small and medium enterprises. Journal of Science and Technology Policy Management, 11(2), 171–201. https://doi.org/10.1108/JSTPM-02-2020-0018

Marr, B. (2018). Big Data in Practice - How 45 Successful Companies Used Big Data Anakytics to deliver extraordinary results. Wiley, 4(1), 1–323.

MDEC. (2022). Business Digital Adoption Index (BDAI) BDAI Framework. 1–10.

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information and Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434

Mlekus, L., Bentler, D., & Maier, G. W. (2020). How to raise technology acceptance : user experience characteristics as technology-inherent determinants. 273–283. https://doi.org/10.1007/s11612-020-00529-7

Mohamad, N. I., Ismail, A., & Nor, A. M. (2020). THE RELATIONSHIP BETWEEN MANAGEMENT SUPPORT IN TRAINING PROGRAMS AND MOTIVATION TO PERFORM TASK WITH MOTIVATION TO LEARN AS MEDIATOR. 16(3), 431–446.

Nasrollahi et al. (2021). The impact of Big Data on SMEs’ Performance. Handbook of Big Data Analytics: Methodologies, 1–36.

Nilashi, M., Baabdullah, A. M., Ali, R., Ooi, K., Tan, G. W., Giannakis, M., & Dwivedi, Y. K. (2023). How can big data and predictive analytics impact the performance and competitive advantage of the food waste and recycling industry ? Annals of Operations Research. https://doi.org/10.1007/s10479-023-05272-y

Nilashi, M., Keng Boon, O., Tan, G., Lin, B., & Abumalloh, R. (2023). Critical Data Challenges in Measuring the Performance of Sustainable Development Goals: Solutions and the Role of Big-Data Analytics. Harvard Data Science Review, 5(3). https://doi.org/10.1162/99608f92.545db2cf

Noor, N. M. (2020). The role of strategic knowledge towards formulating business strategy in MSC status companies: a preliminary outlook. Academic Journal of Business and Social Sciences …, 1–16. https://ir.uitm.edu.my/id/eprint/42533/

Ntizikira, E., Lei, W., Alblehai, F., Saleem, K., & Lodhi, M. A. (2023). Secure and Privacy-Preserving Intrusion Detection and Prevention in the Internet of Unmanned Aerial Vehicles. Sensors, 23(19), 1–27. https://doi.org/10.3390/s23198077

Onyeabor, G. A., & Ta’a, A. (2018). Big Data and Data Quality. 3(1), 1–12. https://doi.org/10.1007/978-3-319-62461-7_1

Onyekwere, L. A., Ogona, I. K., & Ololube, N. P. (2023). Leadership and Management of Change in Organizations. South Asian Research Journal of Humanities and Social Sciences, 5(03), 96–106. https://doi.org/10.36346/sarjhss.2023.v05i03.012

Parker, G., & Parker, C. (2023). Future of Electronic Health Records: A Challenge to Maximize Their Utility. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4457214

Parulian, R., Hapzi Ali, & Ni Nyoman Sawitri. (2023). Executive Support System For Business and Employee Performance: Analysis Of The Ease of Use Of Information System, User Satisfaction and Transformational Leadership. Dinasti International Journal of Management Science, 4(6), 1031–1041. https://doi.org/10.31933/dijms.v4i6.1845

Paul, J., Ueno, A., Dennis, C., Alamanos, E., Curtis, L., Foroudi, P., Kacprzak, A., Kunz, W. H., Liu, J., Marvi, R., Nair, S. L. S., Ozdemir, O., Pantano, E., Papadopoulos, T., Petit, O., Tyagi, S., & Wirtz, J. (2024). Digital transformation: A multidisciplinary perspective and future research agenda. International Journal of Consumer Studies, 48(2), 1–28. https://doi.org/10.1111/ijcs.13015

Peltier, J. W., Zahay, D., & Lehmann, D. R. (2013). Organizational Learning and CRM Success : A Model for Linking Organizational Practices , Customer Data Quality , and Performance ☆. Journal of Interactive Marketing, 27(1), 1–13. https://doi.org/10.1016/j.intmar.2012.05.001

Prakash, D. (2024). Data-Driven Management: The Impact of Big Data Analytics on Organizational Performance. International Journal for Global Academic & Scientific Research, 3(2), 12–23. https://doi.org/10.55938/ijgasr.v3i2.74

Reddy Koilakonda, R. (2024). Implementing Data Governance Frameworks for Enhanced Decision Making. International Journal of Science and Research (IJSR), 13(6), 1239–1243. https://doi.org/10.21275/sr24618105346

Reyes-Veras, P. F., Renukappa, S., & Suresh, S. (2021). Challenges faced by the adoption of big data in the Dominican Republic construction industry: An empirical study. Journal of Information Technology in Construction, 26(September), 812–831. https://doi.org/10.36680/J.ITCON.2021.044

Reza, M. N. H., Jayashree, S., & Malarvizhi, C. A. (2021). Industry 4.0 and sustainability - A study on Malaysian MSC status companies. Exploring Information Systems Research Boundaries (EISRB) - Series 3, January, 91–104. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3882089

Rob, M. A. Al, Nor, M. N. M., & Salleh, Z. (2024). The Role of Training in Big Data Analytics Adoption: An Empirical Study of Auditors Using the Technology Acceptance Model. Electronic Journal of Business Research Methods, 22(2), 30–45. https://doi.org/10.34190/EJBRM.22.2.3752

Rubio-Andrés, M., del Mar Ramos-González, M., & Sastre-Castillo, M. Á. (2022). Driving innovation management to create shared value and sustainable growth. Review of Managerial Science, 16(7). https://doi.org/10.1007/s11846-022-00520-0

Salleh, K. A., & Janczewski, L. (2019). Security Considerations in Big Data Solutions Adoption: Lessons from a Case Study on a Banking Institution. Procedia Computer Science, 164, 168–176. https://doi.org/10.1016/j.procs.2019.12.169

Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: The real-world use of big data: How innovative enterprises extract value from uncertain data. IBM Institute for Business Value, 1–20. https://www.ibm.com/smarterplanet/global/files/se__sv_se__intelligence__Analytics_-_The_real-world_use_of_big_data.pdf

Shafique, M. N., Yeo, S. F., & Tan, C. L. (2024). Roles of top management support and compatibility in big data predictive analytics for supply chain collaboration and supply chain performance. Technological Forecasting and Social Change, 199. https://doi.org/10.1016/j.techfore.2023.123074

Shanmugam, D. B., Dhilipan, J., Prabhu, T., Sivasankari, A., & Vignesh, A. (2023). The Management of Data Quality Assessment in Big Data Presents a Complex Challenge, Accompanied by Various Issues Related to Data Quality. Research Highlights in Mathematics and Computer Science Vol. 8, April, 78–91. https://doi.org/10.9734/bpi/rhmcs/v8/18858d

Shiyab, W., Ferguson, C., Rolls, K., & Halcomb, E. (2023). Solutions to address low response rates in online surveys. European Journal of Cardiovascular Nursing, 22(4), 441–444. https://doi.org/10.1093/eurjcn/zvad030

Smith, G. (2023). ORGANIZATIONAL EFFECTS ON U.S. PUBLIC SECTOR BDA ADOPTIONS Organizational Effects on BDA Adoption Outcomes in U. April.

Soebroto, G., & Budiyanto, B. (2021). The Role of Competitive Advantage as Mediating The Effect of Strategic Planning on Company Performance. IJEBD (International Journal of Entrepreneurship and Business Development), 4(2). https://doi.org/10.29138/ijebd.v4i2.1290

Solana-González, P., Vanti, A. A., García Lorenzo, M. M., & Bello Pérez, R. E. (2021). Data mining to assess organizational transparency across technology processes: An approach from it governance and knowledge management. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810130

Su, X., Zeng, W., Zheng, M., Jiang, X., Lin, W., & Xu, A. (2022). Big data analytics capabilities and organizational performance: the mediating effect of dual innovations. European Journal of Innovation Management, 25(4). https://doi.org/10.1108/EJIM-10-2020-0431

Sulaiman, N. S., Fauzi, M. A., Hussain, S., & Wider, W. (2022). Cybersecurity Behavior among Government Employees: The Role of Protection Motivation Theory and Responsibility in Mitigating Cyberattacks. Information (Switzerland), 13(9). https://doi.org/10.3390/info13090413

Sweeney, L. (1997). Weaving Technology and Policy Together to Maintain Confidentiality. Journal of Law, Medicine and Ethics, 25(2–3). https://doi.org/10.1111/j.1748-720X.1997.tb01885.x

Tabesh, P., Mousavidin, E., & Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), 347–358. https://doi.org/10.1016/j.bushor.2019.02.001

Tao, H., Bhuiyan, M. Z. A., Rahman, M. A., Wang, G., Wang, T., Ahmed, M. M., & Li, J. (2019). Economic perspective analysis of protecting big data security and privacy. Future Generation Computer Systems, 98, 660–671. https://doi.org/10.1016/J.FUTURE.2019.03.042

Telekom Malaysia Berhad. (2022). Accelerating Our Sustainability Journey . Putting People First Training & Development. Integrated Annual Report, 124–126.

Thanabalan, P., Haniruzila, A. V., Ramayah, H. T., & Vafaei-zadeh, A. (2024). Big Data Analytics Adoption in Manufacturing Companies : The Contingent Role of Data-Driven Culture.

Tolossa, D. (2023). Importance of Cybersecurity Awareness Training for Employees in Business. Vidya - a Journal of Gujarat University, 2(2), 104–107. https://doi.org/10.47413/vidya.v2i2.206

Tornatzky, L., & Fletscher, M. (1990). The Deployment of Technology. In The Processes of Technological Innovation (pp. 118–147).

Ujang, S., Saad, Z. A., Mohamad, M., Abdullah, M. A., & Sarimin, S. N. (2023). Assessing the Readiness of Staff at Uitm Pahang Toward Big Data Adoption. 1–21. https://doi.org/10.21203/rs.3.rs-2663587/v1

Vysotskaya, A., & Prokofieva, M. (2024). Management accounting and data analytics: technology acceptance from the educational perspective. Accounting Education, 1–24. https://doi.org/10.1080/09639284.2024.2338140

Wahab, S. N., Hamzah, M. I., Sayuti, N. M., Lee, W. C., & Tan, S. Y. (2021). Big data analytics adoption: An empirical study in the Malaysian warehousing sector. International Journal of Logistics Systems and Management, 40(1), 121–144. https://doi.org/10.1504/IJLSM.2021.117703

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. fan, Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70. https://doi.org/10.1016/j.jbusres.2016.08.009

Wook, M., Hasbullah, N. A., Zainudin, N. M., Zarina, Z., & Jabar, A. (2021). Exploring big data traits and data quality dimensions for big data analytics application using partial least squares structural equation modelling. Journal of Big Data. https://doi.org/10.1186/s40537-021-00439-5

Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Shuib, L., Ahani, A., & Ibrahim, O. (2018). Influence of big data adoption on manufacturing companies’ performance: An integrated DEMATEL-ANFIS approach. Technological Forecasting and Social Change, 137. https://doi.org/10.1016/j.techfore.2018.07.043

Yusoff, S., Noh, N. H. M., & Isa, N. (2021). University students’ readiness for job opportunities in big data analytics. Journal of Physics: Conference Series, 2084(1). https://doi.org/10.1088/1742-6596/2084/1/012026

Zian, L. Q., Zulkarnain, N. Z., & Kumar, Y. J. (2024a). Challenges in big data adoption for Malaysian organizations : a review Challenges in big data adoption for Malaysian organizations : a review. January, 507–517. https://doi.org/10.11591/ijeecs.v33.i1.pp507-517

Zian, L. Q., Zulkarnain, N. Z., & Kumar, Y. J. (2024b). Challenges in big data adoption for Malaysian organizations: a review. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 507–517. https://doi.org/10.11591/ijeecs.v33.i1.pp507-517

Downloads

Published

01-04-2025

How to Cite

Muhammad, N. K., Osman, N. H. ., & Salleh, N. A. . (2025). Big Data Analytics Adoption in Malaysia Digital Status Companies: The Moderating Role of Training. Journal of Information and Knowledge Management, 15(1), 46–70. https://doi.org/10.24191/jikm.v15i1.4418

Issue

Section

Articles