CHOLESTEROL ASSIMILATION OF Lactobacillus plantarum L8 AND Lactobacillus pentosus S1 THROUGH IN-VITRO CHOLESTEROL LOWERING ACTIVITY

Authors

  • Athifah Ismail School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Ilyanie Hj Yaacob School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Ida Muryany Md Yasin School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

Keywords:

Hypercholesterolemia, Lactobacillus, Cholesterol assimilation, bile salt, fermented fish

Abstract

Probiotics gives a new insight in treating hypercholesterolemia. Recent research found that probiotics such
as Lactobacillus possess multiple health benefits including cholesterol assimilation in human body. Bile
salt deconjugation and cellular cell binding were proposed as underlying mechanisms for cholesterol
lowering activity. Lactobacillus plantarum L8 and Lactobacillus pentosus S1 isolated from fermented fish
food known as pekasam were assessed for their ability to deconjugate bile salt such as Taurodeoxycholic
acid (TDCA). To achieve this, Lactobacillus plantarum L8 and Lactobacillus pentosus S1 were tested for
bile salt de-conjugation through direct plating assay on de Mann, Rogosa, Sharpe (MRS) agar supplemented
with TDCA. Different stages of cell growths of these strains were also tested for their ability to reduce
cholesterol in MRS broth supplemented with cholesterol. Bacterial growth was also observed to identify
whether incorporation of cholesterol in MRS broth would affect the growth pattern of L. plantarum L8 and
L. pentosus S1 and their correlation with cholesterol reduction. The result showed that both L. plantarum
L8 and L, pentosus S1 did not deconjugate bile salt on selective agar. However, only the growing, resting,
and dead cells of L. plantarum L8 were able to assimilate cholesterol by 33%, 8% and 1%, respectively,
while those of L. pentosus S1 did not show any activity which might be due to species specificity. Besides,
L. plantarum L8 has a faster doubling time and a higher growth rate as compared to L. pentosus S1. This
explains the cholesterol removal of L. plantarum L8 being higher than L. pentosus S1. Besides, after 18 h
of incubation, L. plantarum L8 supplemented with cholesterol had a maintained growth up to 24 h as
compared to its control (absence of cholesterol). In conclusion. L. plantarum L8 has the potential to act as
cholesterol lowering probiotics.

References

Allain, T., Chaouch, S., Thomas, M., Travers, M.A., Vallet, I., Langella, P., Grellier, P., Polack, B., Florent, I., &

Bermudez-Humaran, L.G. (2018). Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia

Lactobacilli?. Frontiers in Microbiology, 9, 89. https://doi.org/10.3389/fmicb.2018.00089

Alves, C., Floriano, S., Voltarelli, V., De Rensis, C., Pimentel, T., Costa, G., & Vianna, P. (2020). Effect of

carbonation and probiotic addition on the physicochemical, microbiological and sensory characteristics of whey dairy

beverage. Journal of Dairy Research, 87(2), 255-258.

American Heart Association (2020). Prevention and Treatment of High Cholesterol (Hyperlipidemia).

https://www.heart.org/en/health-topics/cholesterol/prevention-and-treatment-of-high-cholesterol

hyperlipidemia#:~:text=The%20American%20Heart%20Association%20recommends,fat%2Dfree%20dairy%20pro

ducts%20instead. [Access online 11 November 2020].

Bailey, Regina. (2021). Phases of the Bacterial Growth Curve. https://www.thoughtco.com/bacterial-growth-curve

phases-4172692. [Access online 17 February 2021].

Begley, M., Hill, C., & Gahan, C.G.M. (2006). Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental

Microbiology, 72(3), 1729–1738. https://doi.org/10.1128/aem.72.3.1729-1738.2006

Benjamin, E.J., Virani, S.S., Callaway, C.W., Chamberlain, A.M., Chang, A.R., Cheng, S., Chiuve, S.E., Cushman,

M., Delling, F.N., Deo, R., de Ferranti, S.D., Ferguson, J.F., Fornage, M., Gillespie, C., Isasi, C.R., Jiménez, M.C.,

Jordan, L.C., Judd, S.E., Lackland, D., Litchman, J.H., Lynda, L., Simin, L., Chris T.L., Pamela, L.L., Jason, S.M.,

Muntner, P. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association.

Circulation, 137, e67–e492.

Bhat, B., & Bajaj, BK. (2019). Hypocholesterolemic potential of probiotics: Concept and mechanistic insights. Indian

Journal of Experimental Biology, 57, 73-85.

Bhat, B., & Bajaj, B.K. (2020). Multifarious cholesterol lowering potential of lactic acid bacteria equipped

with desired probiotic functional attributes. 3 Biotech, 10(200). https://doi.org/10.1007/s13205-020-02183-8

Chiang, J., & Ferrell, J. M. (2020). Bile Acid Biology, Pathophysiology, and Therapeutics. Clinical liver disease,

(3), 91–94. https://doi.org/10.1002/cld.861

Choi, E., & Chang, H. (2015). Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM

isolated from kimchi. LWT - Food Science and Technology, 62.

De Melo Pereira, G.V., de Oliveira Coelho, B., Junior, A.I.M., Thomaz-Soccol, V., & Soccol, C.R. (2018). How to

select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076.

https://doi.org/10.1016/j.biotechadv.2018.09.003

f

Statistics

Malaysia

(2022).

Statistics

on

Causes

of

Death,

https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=401&bul_id=R3VrRUhwSXZDN2k4SGN6a

kRhTStwQT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09#:~:text=causes%20of%20death- .Ischaemic%20heart%20diseases%20remained%20as%20the%20principal%20causes%20of%20death,medically%2

certified%20deaths%20in%202020. [Access online 22 April 2022].

Ezzat, M. A., Zare, D., Karim, R. and Ghazali H. M. (2015).Trans- and cis-urocanic acid, biogenic amine and amino

acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia

(Oreochromis mossambicus). Food Chemistry 172: 893–899. https://doi.org/10.1016/j.foodchem.2014.09.158

Gorenjak, M., Gradisnik, L., Trapecar, M., Pistello, M., Kozmus, C.P., Skorjanc, D., Skok, P., Langerhole, T., &

Cencic, A. (2014). Improvement of lipid profile by probiotic/protective cultures: study in a non-carcinogenic small

intestinal cell model. New Microbiologica, 37, 51-64.

Huang, Y., Wu, F., Wang, X., Sui, Y., Yang, L., & Wang, J. (2013). Characterization of Lactobacillus plantarum

Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. Journal of

Dairy Science, 96, 2816-2825. http://dx.doi.org/ 10.3168/jds.2012-6371

Huang, C.H., Ho, C.Y., Chen, C.T., Hsu, H.F., & Lin, Y.H. (2019). Probiotic BSH Activity and Anti-Obesity Potential

of Lactobacillus plantarum Strain TCI378 Isolated from Korean Kimchi. Preventive Nutrition and Food Science,

(4), 434-441.

Huda, N. (2012). Malaysian Fermented Fish Products. In Hui Y. H (Ed.), Handbook of Animal-Based Fermented

Foods and Beverage Technology (pp.709-716), Taylor and Francis (CRC Press). http://dx.doi.org/10.1201/b12084

Hojjati, M., Behabahani, B.A., & Falah, F. (2020). Aggregation, adherence, anti-adhesion and antagonistic activity

properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microbial

Pathogenesis, 14, 104420. https://doi.org/10.1016/j.micpath.2020.104420

Ida Muryany, M.Y., Ina Salwany, M.Y., Ghazali, A.R., Hing, H.L., & Nor Fadilah, R. (2017) Identification and

characterization of the Lactic Acid Bacteria isolated from Malaysian fermented fish (Pekasam). International Food

Research Journal, 24(2), 868-875.

Ida Muryany, Hing, H.L., Ina Salwany., Ghazali, A.R., Mohd Zamri, S., & Nor Fadilah, R. (2018). Adhesion Ability

and Cytotoxic Evaluation of Lactobacillus Strains Isolated from Malaysian Fermented Fish (Pekasam) on Ht-29 and

Ccd-18Co Intestinal Cells. Sains Malaysiana. 47(10), 2391-2399. http://dx.doi.org/10.17576/jsm-2018-4710-15

Turn

Physiology

Jansen, L., Allard, N., Saris, C., Keijer, J., Hopman, M., & Timmers, S. (2020). Muscle Toxicity of Drugs: When

Drugs

into

Pathophysiology.

https://doi.org/10.1152/physrev.00002.2019

Physiological

reviews,

(2),

–672.

Jeong, S.M., Kim, Kyuwoong., Kim, S.M., Ilee, G., Park, S.Y, Kim, Y.Y., Son, J.S., Yun, J.M., & Park, S.M. (2018).

Effect of Change in Total Cholesterol Levels on Cardiovascular Disease Among Young Adults. Journal of American

Heart Association., 7(12), e008819. DOI: 10.1161/JAHA.118.008819

Jia. L., Betters, J.L., & Yu, L. (2011). Niemann-Pick C1-Like 1(NPC1L1) Protein inIntestinal and HepaticCholesterol

Transport. Annual Review of Physiology, 73, 239-59. 10.1146/annurev-physiol-012110-142233

Kriaa, A., Bourgin, M., Potiron, A., Mkaouar, H., Jablaoui, A., Gerard, P., Maguin, E., & Rhimi, M. (2019). Microbial

impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of lipid research, 60(2),

-332. https://doi.org/10.1194/jlr.R088989

Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F.,

Jain, S., & Yadav, H. (2012). Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases.

Experimental Diabetes Research. 2012, 902917. https://doi.org/10.1155/2012/902917

Kunnen, S., & Van Eck, M. (2012). Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?. Journal

of Lipid Research, 53, 1783-1799. https://doi.org/10.1194/jlr.R02451

Lamb, Y.N. (2020). Rosuvastatin/Ezetimibe: A Review in Hypercholesterolemia. American Journal of

Cardiovascular Drugs, 20, 381-392. https://doi.org/10.1007/s40256-020-00421-1

Liong, M.T., & Shah, N.P. (2005). Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains.

Journal of Dairy Sciences, 88(1), 55-66.

Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2019). Evaluation of the in vitro

cholesterol-lowering activity of the probiotic strain Bacillus coagulans MTCC 5856. International Journal of Food

Science and Technology, 54, 212-220. https://doi.org/10.1111/ijfs.13926

Markowiak, P., & Slizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients,

, 1021. https://doi.org/10.3390/nu9091021

Matejcekova, Z., Liptakova, D., Spodniakova, S., & Valik, L. (2016). Characterization of the growth of Lactobacillus

plantarum in milk in dependence on temperature. Acta Chimica Slovaca, 9(2), https://doi.org/10.1515/acs-2016-0018

Miremadi, F., Ayyash, M., Sherkat, F., & Stojanovska, L. (2014). Cholesterol reduction mechanisms and fatty acid

composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. Journal of Functional Foods, 9, 295

http://dx.doi.org/10.1016/j.jff.2014.05.002

Miyazaki, T., Sasaki, S-I., Toyoda, A., Wei, F-Y., Shirai, M., Morishita, Y., Ikegami, T., Tomizawa, K., & Honda, A.

(2020) Impaired bile acid metabolism with defectives of mitochondrial-tRNA taurine modification and bile acid

taurine conjugation in the taurine depleted cats. Scientific Reports, 10, 4915. https://doi.org/10.1038/s41598-020

-6

Oleksy, M., & Klewicka, E. (2017). Exopolysaccharides produces by Lactobacillus sp.: Biosynthesis and Application.

Critical Reviews in Food Science & Nutrition, 58(3), 450-462.

O'Morain, V., & Ramji, D. (2019). The Potential of Probiotics in the Prevention and Treatment of Atherosclerosis.

Molecular Nutrition & Food Research, 64, 1900797.

in

Vitro

Findings.

Ooi, L.G., & Liong, M.T. (2010). Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo

and

International

https://doi.org/10.3390/ijms11062499

the

Human

Journal

of

Molecular

Sciences,

,

-2522.

Pereira, D.I.A., & Gibson, G.R. (2002). Cholesterol Assimilation by Lactic Acid Bacteria and Bifidobacteria Isolated

from

Gut.

Applied

https://doi.org/10.1128/AEM.68.9.4689-4693.2002

and

Environmental

Microbiology,

(9),

Prete, R., Long, S.L., Gallardo, A.L., Gahan, C.G., Corsetti, A., & Joyce, S.A. (2020). Beneficial bile acid metabolism

from Lactobacillus plantarum of food origin. Scientific Reports, 10, 1165. https://doi.org/10.1038/s41598-020-58069

Ramkumar, S., Raghunath., A., & Raghunath, S. (2016). Statin Therapy: Review of Safety and Potential Side Effects.

Acta Cardiologic Sinica, 32(6), 631-639. https://dx.doi.org/10.6515%2FACS20160611A

Samanta, D., Mulye, M., Clemente, T.M., Justis, A.V., & Gilk, S.D. (2017). Manipulation of Host Cholesterol by

Obligate

Bacteria.

Frontiers

https://dx.doi.org/10.3389%2Ffcimb.2017.00165

in

Cellular

and Infection Microbiology, 7, 165.

Shehata, M.G., El Sahn, M.A., El Sohaimy, S.A., & Youssef, M.M. (2019). In vitro assessment of

hypocholesterolemic activity of Lactococcus lactis subsp. Lactis. Bulletin of the National Research Centre, 43(60).

https://doi.org/10.1186/s42269-019-0090-1

Shokryazdan, P., Jahromi, M.F., Liang, J.B., & Ho, Y.W. (2017). Probiotics: From Isolation to Application. Journal

of the American College of Nutrition, 36(8), 666-676. http://dx.doi.org/10.1080/07315724.2017.1337529

Singhal, N., Maurya, A.K., Mohanty, S., Kumar, M., & Virdi, J.S. (2019). Evaluation of Bile Salt Hydrolases,

Cholesterol-Lowering Capabilities, and Probiotic Potential of Enterococcus faecium Isolated from Rhizosphere.

Frontiers in Microbiology, 10, 1567. https://doi.org/10.3389/fmicb.2019.01567

Singhal, N., Singh, N.S., Mohanty, S., Kumar, M., & Virdi, J.S. (2021). Rhizospheric Lactobacillus plantarum

(Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholesterolemic and probiotic capabilities in

vitro. Scientific Reports, 11, 15288. https://doi.org/10.1038/s41598-021-94776-3

Sirilun, S., Chaiyasut, C., Kantachote, D., & Luxananil, A. (2010). Characterisation of non human origin probiotic

Lactobacillus plantarum with cholesterol-lowering property. African Journal of Microbiology Research. 4. 994-1000.

Sivamaruthi, B.S., Kesika, P., & Chaiyasut, C. (2019). A Mini-Review of Human Studies on Cholesterol-Lowering

Properties of Probiotics. Scientia Pharmaceutica, 87, 26. https://doi.org/10.3390/scipharm87040026

Sui, Y., Liu, J., Liu, Y., & Wang, Y. (2021). In vitro probiotic characterization of Lactobacillus strains from fermented

tangerine

vinegar and their cholesterol degradation activity. Food Bioscience, 39(1), 100843.

http://dx.doi.org/10.1016/j.fbio.2020.100843

Sukarno, A., Fahreza, M., Fanani, T., Widodo, W., & Hadisaputro, W. (2021). Cholesterol Assimilation of Two

Probiotic Strains of Lactobacillus casei used as Dairy Starter Cultures. Applied Food Biotechnology, 8 (2): 103-112.

Taylor, B.C., Lejzerowicz, F., Poirel, M., Shaffer, J.P., Jiang, L., Aksenov, A, Litwin, N., Humphrey, G., Martino, C.,

Miller-Montgomery. S., Dorrestein, P.C., Veiga, P., Song, S.J., McDonald, D., Derrien, M., & Knight, R. (2020).

Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome.

American Society for Microbiology, 5(2), e00901-19. https://doi.org/10.1128/mSystems.00901-19

The Star Malaysia (2018). Why cardiovascular disease is the leading cause of death in Malaysia.

https://www.thestar.com.my/lifestyle/health/2018/03/12/too-much-too-little-too [Access online 21 March 2018].

Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Jones, M.L., Rodes, L., & Prakash, S. (2015). Lactobacillus

fermentum NCIMB 5221 and NCIMB 2797 as cholesterol-lowering probiotic biotherapeutics: in vitro analysis.

Beneficial microbes, 6(6), 861-869. https://doi.org/10.3920/BM2015.0021

Tjandrawinata, R.R., Kartawijaya, M., & Hartanti, A.W. (2022). In vitro Evaluation of the Anti-hypercholesterolemic

Effect of Lactobacillus Isolates from Various Sources. Frontiers in Microbiology, 13, 825251..

https://doi.org/10.3389/fmicb.2022.825251

Tsai, C.C., Lin, P.P., Hsieh, Y.M., Zhang, Z.Y., Wu. H.C., & Huang, C.C. (2014). Cholesterol-Lowering Potentials

of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism

In Vitro and In Vivo. The Scientific World Journal, 2014, 690752. http://dx.doi.org/10.1155/2014/690752

Vinderola, C.G., & Reinheimer, J.A. (2003). Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’ study

of probiotic characteristics and biological barrier resistance. Food Research International, 36, 895-904.

https://doi.org/10.1016/S0963-9969(03)00098-X

Vourakis, M., Mayer, G., & Rousseau, G. (2021). The Role of Gut Microbiota on Cholesterol Metabolism in

Atherosclerosis.

International

Journal

https://dx.doi.org/10.3390%2Fijms22158074

Wieers, G., Belkhir, L., Enaud, R., Leclercq., de Foy, J.M.P., Dequenne, I., Timary, P.D., & Cani, P.D. (2020). How

Probiotics

Microbiota.

https://doi.org/10.3389/fcimb.2019.00454

Frontiers

in

Cellular

and Infection Microbiology, 9(454).

Yang, S.T., Kreutzberger, A.J.B., Lee, J., Kiessling, V., & Tamm, L.K. (2017). The Role of Cholesterol in Membrane

Fusion. Chemistry and Physics of Lipids, 199, 136-143. https://dx.doi.org/10.1016%2Fj.chemphyslip.2016.05.003.

Zannini, E., Waters, D.M., Coffey, A., Arendt, E.K. (2016). Production, properties, and industrial food application of

lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.

https://dx.doi.org/10.1007/s00253-015-7172-2

Downloads

Published

2022-10-31