CHOLESTEROL ASSIMILATION OF Lactobacillus plantarum L8 AND Lactobacillus pentosus S1 THROUGH IN-VITRO CHOLESTEROL LOWERING ACTIVITY
Keywords:
Hypercholesterolemia, Lactobacillus, Cholesterol assimilation, bile salt, fermented fishAbstract
Probiotics gives a new insight in treating hypercholesterolemia. Recent research found that probiotics such
as Lactobacillus possess multiple health benefits including cholesterol assimilation in human body. Bile
salt deconjugation and cellular cell binding were proposed as underlying mechanisms for cholesterol
lowering activity. Lactobacillus plantarum L8 and Lactobacillus pentosus S1 isolated from fermented fish
food known as pekasam were assessed for their ability to deconjugate bile salt such as Taurodeoxycholic
acid (TDCA). To achieve this, Lactobacillus plantarum L8 and Lactobacillus pentosus S1 were tested for
bile salt de-conjugation through direct plating assay on de Mann, Rogosa, Sharpe (MRS) agar supplemented
with TDCA. Different stages of cell growths of these strains were also tested for their ability to reduce
cholesterol in MRS broth supplemented with cholesterol. Bacterial growth was also observed to identify
whether incorporation of cholesterol in MRS broth would affect the growth pattern of L. plantarum L8 and
L. pentosus S1 and their correlation with cholesterol reduction. The result showed that both L. plantarum
L8 and L, pentosus S1 did not deconjugate bile salt on selective agar. However, only the growing, resting,
and dead cells of L. plantarum L8 were able to assimilate cholesterol by 33%, 8% and 1%, respectively,
while those of L. pentosus S1 did not show any activity which might be due to species specificity. Besides,
L. plantarum L8 has a faster doubling time and a higher growth rate as compared to L. pentosus S1. This
explains the cholesterol removal of L. plantarum L8 being higher than L. pentosus S1. Besides, after 18 h
of incubation, L. plantarum L8 supplemented with cholesterol had a maintained growth up to 24 h as
compared to its control (absence of cholesterol). In conclusion. L. plantarum L8 has the potential to act as
cholesterol lowering probiotics.
References
Allain, T., Chaouch, S., Thomas, M., Travers, M.A., Vallet, I., Langella, P., Grellier, P., Polack, B., Florent, I., &
Bermudez-Humaran, L.G. (2018). Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia
Lactobacilli?. Frontiers in Microbiology, 9, 89. https://doi.org/10.3389/fmicb.2018.00089
Alves, C., Floriano, S., Voltarelli, V., De Rensis, C., Pimentel, T., Costa, G., & Vianna, P. (2020). Effect of
carbonation and probiotic addition on the physicochemical, microbiological and sensory characteristics of whey dairy
beverage. Journal of Dairy Research, 87(2), 255-258.
American Heart Association (2020). Prevention and Treatment of High Cholesterol (Hyperlipidemia).
https://www.heart.org/en/health-topics/cholesterol/prevention-and-treatment-of-high-cholesterol
hyperlipidemia#:~:text=The%20American%20Heart%20Association%20recommends,fat%2Dfree%20dairy%20pro
ducts%20instead. [Access online 11 November 2020].
Bailey, Regina. (2021). Phases of the Bacterial Growth Curve. https://www.thoughtco.com/bacterial-growth-curve
phases-4172692. [Access online 17 February 2021].
Begley, M., Hill, C., & Gahan, C.G.M. (2006). Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental
Microbiology, 72(3), 1729–1738. https://doi.org/10.1128/aem.72.3.1729-1738.2006
Benjamin, E.J., Virani, S.S., Callaway, C.W., Chamberlain, A.M., Chang, A.R., Cheng, S., Chiuve, S.E., Cushman,
M., Delling, F.N., Deo, R., de Ferranti, S.D., Ferguson, J.F., Fornage, M., Gillespie, C., Isasi, C.R., Jiménez, M.C.,
Jordan, L.C., Judd, S.E., Lackland, D., Litchman, J.H., Lynda, L., Simin, L., Chris T.L., Pamela, L.L., Jason, S.M.,
Muntner, P. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association.
Circulation, 137, e67–e492.
Bhat, B., & Bajaj, BK. (2019). Hypocholesterolemic potential of probiotics: Concept and mechanistic insights. Indian
Journal of Experimental Biology, 57, 73-85.
Bhat, B., & Bajaj, B.K. (2020). Multifarious cholesterol lowering potential of lactic acid bacteria equipped
with desired probiotic functional attributes. 3 Biotech, 10(200). https://doi.org/10.1007/s13205-020-02183-8
Chiang, J., & Ferrell, J. M. (2020). Bile Acid Biology, Pathophysiology, and Therapeutics. Clinical liver disease,
(3), 91–94. https://doi.org/10.1002/cld.861
Choi, E., & Chang, H. (2015). Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM
isolated from kimchi. LWT - Food Science and Technology, 62.
De Melo Pereira, G.V., de Oliveira Coelho, B., Junior, A.I.M., Thomaz-Soccol, V., & Soccol, C.R. (2018). How to
select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076.
https://doi.org/10.1016/j.biotechadv.2018.09.003
f
Statistics
Malaysia
(2022).
Statistics
on
Causes
of
Death,
https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=401&bul_id=R3VrRUhwSXZDN2k4SGN6a
kRhTStwQT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09#:~:text=causes%20of%20death- .Ischaemic%20heart%20diseases%20remained%20as%20the%20principal%20causes%20of%20death,medically%2
certified%20deaths%20in%202020. [Access online 22 April 2022].
Ezzat, M. A., Zare, D., Karim, R. and Ghazali H. M. (2015).Trans- and cis-urocanic acid, biogenic amine and amino
acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia
(Oreochromis mossambicus). Food Chemistry 172: 893–899. https://doi.org/10.1016/j.foodchem.2014.09.158
Gorenjak, M., Gradisnik, L., Trapecar, M., Pistello, M., Kozmus, C.P., Skorjanc, D., Skok, P., Langerhole, T., &
Cencic, A. (2014). Improvement of lipid profile by probiotic/protective cultures: study in a non-carcinogenic small
intestinal cell model. New Microbiologica, 37, 51-64.
Huang, Y., Wu, F., Wang, X., Sui, Y., Yang, L., & Wang, J. (2013). Characterization of Lactobacillus plantarum
Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. Journal of
Dairy Science, 96, 2816-2825. http://dx.doi.org/ 10.3168/jds.2012-6371
Huang, C.H., Ho, C.Y., Chen, C.T., Hsu, H.F., & Lin, Y.H. (2019). Probiotic BSH Activity and Anti-Obesity Potential
of Lactobacillus plantarum Strain TCI378 Isolated from Korean Kimchi. Preventive Nutrition and Food Science,
(4), 434-441.
Huda, N. (2012). Malaysian Fermented Fish Products. In Hui Y. H (Ed.), Handbook of Animal-Based Fermented
Foods and Beverage Technology (pp.709-716), Taylor and Francis (CRC Press). http://dx.doi.org/10.1201/b12084
Hojjati, M., Behabahani, B.A., & Falah, F. (2020). Aggregation, adherence, anti-adhesion and antagonistic activity
properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microbial
Pathogenesis, 14, 104420. https://doi.org/10.1016/j.micpath.2020.104420
Ida Muryany, M.Y., Ina Salwany, M.Y., Ghazali, A.R., Hing, H.L., & Nor Fadilah, R. (2017) Identification and
characterization of the Lactic Acid Bacteria isolated from Malaysian fermented fish (Pekasam). International Food
Research Journal, 24(2), 868-875.
Ida Muryany, Hing, H.L., Ina Salwany., Ghazali, A.R., Mohd Zamri, S., & Nor Fadilah, R. (2018). Adhesion Ability
and Cytotoxic Evaluation of Lactobacillus Strains Isolated from Malaysian Fermented Fish (Pekasam) on Ht-29 and
Ccd-18Co Intestinal Cells. Sains Malaysiana. 47(10), 2391-2399. http://dx.doi.org/10.17576/jsm-2018-4710-15
Turn
Physiology
Jansen, L., Allard, N., Saris, C., Keijer, J., Hopman, M., & Timmers, S. (2020). Muscle Toxicity of Drugs: When
Drugs
into
Pathophysiology.
https://doi.org/10.1152/physrev.00002.2019
Physiological
reviews,
(2),
–672.
Jeong, S.M., Kim, Kyuwoong., Kim, S.M., Ilee, G., Park, S.Y, Kim, Y.Y., Son, J.S., Yun, J.M., & Park, S.M. (2018).
Effect of Change in Total Cholesterol Levels on Cardiovascular Disease Among Young Adults. Journal of American
Heart Association., 7(12), e008819. DOI: 10.1161/JAHA.118.008819
Jia. L., Betters, J.L., & Yu, L. (2011). Niemann-Pick C1-Like 1(NPC1L1) Protein inIntestinal and HepaticCholesterol
Transport. Annual Review of Physiology, 73, 239-59. 10.1146/annurev-physiol-012110-142233
Kriaa, A., Bourgin, M., Potiron, A., Mkaouar, H., Jablaoui, A., Gerard, P., Maguin, E., & Rhimi, M. (2019). Microbial
impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of lipid research, 60(2),
-332. https://doi.org/10.1194/jlr.R088989
Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F.,
Jain, S., & Yadav, H. (2012). Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases.
Experimental Diabetes Research. 2012, 902917. https://doi.org/10.1155/2012/902917
Kunnen, S., & Van Eck, M. (2012). Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?. Journal
of Lipid Research, 53, 1783-1799. https://doi.org/10.1194/jlr.R02451
Lamb, Y.N. (2020). Rosuvastatin/Ezetimibe: A Review in Hypercholesterolemia. American Journal of
Cardiovascular Drugs, 20, 381-392. https://doi.org/10.1007/s40256-020-00421-1
Liong, M.T., & Shah, N.P. (2005). Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains.
Journal of Dairy Sciences, 88(1), 55-66.
Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2019). Evaluation of the in vitro
cholesterol-lowering activity of the probiotic strain Bacillus coagulans MTCC 5856. International Journal of Food
Science and Technology, 54, 212-220. https://doi.org/10.1111/ijfs.13926
Markowiak, P., & Slizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients,
, 1021. https://doi.org/10.3390/nu9091021
Matejcekova, Z., Liptakova, D., Spodniakova, S., & Valik, L. (2016). Characterization of the growth of Lactobacillus
plantarum in milk in dependence on temperature. Acta Chimica Slovaca, 9(2), https://doi.org/10.1515/acs-2016-0018
Miremadi, F., Ayyash, M., Sherkat, F., & Stojanovska, L. (2014). Cholesterol reduction mechanisms and fatty acid
composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. Journal of Functional Foods, 9, 295
http://dx.doi.org/10.1016/j.jff.2014.05.002
Miyazaki, T., Sasaki, S-I., Toyoda, A., Wei, F-Y., Shirai, M., Morishita, Y., Ikegami, T., Tomizawa, K., & Honda, A.
(2020) Impaired bile acid metabolism with defectives of mitochondrial-tRNA taurine modification and bile acid
taurine conjugation in the taurine depleted cats. Scientific Reports, 10, 4915. https://doi.org/10.1038/s41598-020
-6
Oleksy, M., & Klewicka, E. (2017). Exopolysaccharides produces by Lactobacillus sp.: Biosynthesis and Application.
Critical Reviews in Food Science & Nutrition, 58(3), 450-462.
O'Morain, V., & Ramji, D. (2019). The Potential of Probiotics in the Prevention and Treatment of Atherosclerosis.
Molecular Nutrition & Food Research, 64, 1900797.
in
Vitro
Findings.
Ooi, L.G., & Liong, M.T. (2010). Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo
and
International
https://doi.org/10.3390/ijms11062499
the
Human
Journal
of
Molecular
Sciences,
,
-2522.
Pereira, D.I.A., & Gibson, G.R. (2002). Cholesterol Assimilation by Lactic Acid Bacteria and Bifidobacteria Isolated
from
Gut.
Applied
https://doi.org/10.1128/AEM.68.9.4689-4693.2002
and
Environmental
Microbiology,
(9),
Prete, R., Long, S.L., Gallardo, A.L., Gahan, C.G., Corsetti, A., & Joyce, S.A. (2020). Beneficial bile acid metabolism
from Lactobacillus plantarum of food origin. Scientific Reports, 10, 1165. https://doi.org/10.1038/s41598-020-58069
Ramkumar, S., Raghunath., A., & Raghunath, S. (2016). Statin Therapy: Review of Safety and Potential Side Effects.
Acta Cardiologic Sinica, 32(6), 631-639. https://dx.doi.org/10.6515%2FACS20160611A
Samanta, D., Mulye, M., Clemente, T.M., Justis, A.V., & Gilk, S.D. (2017). Manipulation of Host Cholesterol by
Obligate
Bacteria.
Frontiers
https://dx.doi.org/10.3389%2Ffcimb.2017.00165
in
Cellular
and Infection Microbiology, 7, 165.
Shehata, M.G., El Sahn, M.A., El Sohaimy, S.A., & Youssef, M.M. (2019). In vitro assessment of
hypocholesterolemic activity of Lactococcus lactis subsp. Lactis. Bulletin of the National Research Centre, 43(60).
https://doi.org/10.1186/s42269-019-0090-1
Shokryazdan, P., Jahromi, M.F., Liang, J.B., & Ho, Y.W. (2017). Probiotics: From Isolation to Application. Journal
of the American College of Nutrition, 36(8), 666-676. http://dx.doi.org/10.1080/07315724.2017.1337529
Singhal, N., Maurya, A.K., Mohanty, S., Kumar, M., & Virdi, J.S. (2019). Evaluation of Bile Salt Hydrolases,
Cholesterol-Lowering Capabilities, and Probiotic Potential of Enterococcus faecium Isolated from Rhizosphere.
Frontiers in Microbiology, 10, 1567. https://doi.org/10.3389/fmicb.2019.01567
Singhal, N., Singh, N.S., Mohanty, S., Kumar, M., & Virdi, J.S. (2021). Rhizospheric Lactobacillus plantarum
(Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholesterolemic and probiotic capabilities in
vitro. Scientific Reports, 11, 15288. https://doi.org/10.1038/s41598-021-94776-3
Sirilun, S., Chaiyasut, C., Kantachote, D., & Luxananil, A. (2010). Characterisation of non human origin probiotic
Lactobacillus plantarum with cholesterol-lowering property. African Journal of Microbiology Research. 4. 994-1000.
Sivamaruthi, B.S., Kesika, P., & Chaiyasut, C. (2019). A Mini-Review of Human Studies on Cholesterol-Lowering
Properties of Probiotics. Scientia Pharmaceutica, 87, 26. https://doi.org/10.3390/scipharm87040026
Sui, Y., Liu, J., Liu, Y., & Wang, Y. (2021). In vitro probiotic characterization of Lactobacillus strains from fermented
tangerine
vinegar and their cholesterol degradation activity. Food Bioscience, 39(1), 100843.
http://dx.doi.org/10.1016/j.fbio.2020.100843
Sukarno, A., Fahreza, M., Fanani, T., Widodo, W., & Hadisaputro, W. (2021). Cholesterol Assimilation of Two
Probiotic Strains of Lactobacillus casei used as Dairy Starter Cultures. Applied Food Biotechnology, 8 (2): 103-112.
Taylor, B.C., Lejzerowicz, F., Poirel, M., Shaffer, J.P., Jiang, L., Aksenov, A, Litwin, N., Humphrey, G., Martino, C.,
Miller-Montgomery. S., Dorrestein, P.C., Veiga, P., Song, S.J., McDonald, D., Derrien, M., & Knight, R. (2020).
Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome.
American Society for Microbiology, 5(2), e00901-19. https://doi.org/10.1128/mSystems.00901-19
The Star Malaysia (2018). Why cardiovascular disease is the leading cause of death in Malaysia.
https://www.thestar.com.my/lifestyle/health/2018/03/12/too-much-too-little-too [Access online 21 March 2018].
Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Jones, M.L., Rodes, L., & Prakash, S. (2015). Lactobacillus
fermentum NCIMB 5221 and NCIMB 2797 as cholesterol-lowering probiotic biotherapeutics: in vitro analysis.
Beneficial microbes, 6(6), 861-869. https://doi.org/10.3920/BM2015.0021
Tjandrawinata, R.R., Kartawijaya, M., & Hartanti, A.W. (2022). In vitro Evaluation of the Anti-hypercholesterolemic
Effect of Lactobacillus Isolates from Various Sources. Frontiers in Microbiology, 13, 825251..
https://doi.org/10.3389/fmicb.2022.825251
Tsai, C.C., Lin, P.P., Hsieh, Y.M., Zhang, Z.Y., Wu. H.C., & Huang, C.C. (2014). Cholesterol-Lowering Potentials
of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism
In Vitro and In Vivo. The Scientific World Journal, 2014, 690752. http://dx.doi.org/10.1155/2014/690752
Vinderola, C.G., & Reinheimer, J.A. (2003). Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’ study
of probiotic characteristics and biological barrier resistance. Food Research International, 36, 895-904.
https://doi.org/10.1016/S0963-9969(03)00098-X
Vourakis, M., Mayer, G., & Rousseau, G. (2021). The Role of Gut Microbiota on Cholesterol Metabolism in
Atherosclerosis.
International
Journal
https://dx.doi.org/10.3390%2Fijms22158074
Wieers, G., Belkhir, L., Enaud, R., Leclercq., de Foy, J.M.P., Dequenne, I., Timary, P.D., & Cani, P.D. (2020). How
Probiotics
Microbiota.
https://doi.org/10.3389/fcimb.2019.00454
Frontiers
in
Cellular
and Infection Microbiology, 9(454).
Yang, S.T., Kreutzberger, A.J.B., Lee, J., Kiessling, V., & Tamm, L.K. (2017). The Role of Cholesterol in Membrane
Fusion. Chemistry and Physics of Lipids, 199, 136-143. https://dx.doi.org/10.1016%2Fj.chemphyslip.2016.05.003.
Zannini, E., Waters, D.M., Coffey, A., Arendt, E.K. (2016). Production, properties, and industrial food application of
lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Academia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








