PHYLOGENETIC ANALYSIS OF Komagataeibacter sp.: A CELLULOSE-PRODUCER BACTERIA BASED ON 16S rRNA GENE SEQUENCES
Keywords:
Phylogenetics, 16S rRNA, Acetobacter, Bacterial cellulose, KomagataeibacterAbstract
Bacteria of the genus Komagataeibacter are described to be the most noteworthy for having several of its species being efficient and strong cellulose producers. The 16S ribosomal RNA (rRNA) gene analysis is often used for the identification and taxonomic classification of these bacteria species. In order to observe the phylogenetic relationship among Komagataeibacter sp., twelve sequences of the 16S rRNA gene with three sequences each for species namely Komagataeibacter europaeus, Komagataeibacter hansenii, Komagataeibacter intermedius and Komagataeibacter xylinus were retrieved from NCBI GenBank database. The sequences were aligned and analysed using PAUP, OrthoANI and BLAST, followed by the phylogenetic tree construction using a Maximum Likelihood method. The parsimony character diagnostic analysis showed very few numbers of parsimony-informative characters present in the aligned sequences which is only 1.5% of the total characters. The inferred phylogenetic relationships demonstrated the unexpected positioning of K. xylinus (GQ240638: Gluconacetobacter xylinus strain) and K. xylinus (KC11853: G. xylinus strain) into the clades of K. europaeus and K. hansenii respectively. The also very low bootstrap values of the branch points linking the K. europaeus species indicated low support for the produced topologies. The findings of this study indicate that more phylogenies information can be attained by increasing the taxon sampling. In addition, more robust molecular data are needed to infer the phylogenetic relationships between the Komagataeibacter species more accurately.
References
Alkindy, B., Al-Nuaimi, B., Guyeux, C., Couchot, J.-F., Salomon, M., Alsrraj, R., & Philippe, L. (2016). Binary article swarm optimization versus hybrid genetic algorithm for inferring well supported phylogenetic trees. Computational Intelligence Methods for Bioinformatics and Biostatistics, 165–179. https://doi.org/10.1007/978-3-319-44332-4_13
Barja, F., Andrés-Barrao, C., Ortega Pérez, R., Cabello, E. M., & Chappuis, M.-L. (2016). Physiology of Komagataeibacter spp. during acetic acid fermentation. Acetic Acid Bacteria, 201–221. https://doi.org/10.1007/978-4-431-55933-7_9
Bybee, S. M. (2008). Phylogenetics, evolution and systematics of Holodonata with special focus on wing structure evolution: morphological, molecular and fossil evidence. Doctoral dissertation. University of Florida.
Cheng, K.-C., Catchmark, J. M., & Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6), 1033–1045. https://doi.org/10.1007/s10570-009-9346-5
Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840–862. https://doi.org/10.1128/cmr.17.4.840-862.2004
Fitch, W. M. (1977). On the problem of discovering the most parsimonious tree. The American Naturalist, 111(978), 223–257. https://doi.org/10.1086/283157
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 1-8. https://doi.org/10.1038/s41467-018-07641-9.
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764. https://doi.org/10.1128/jcm.01228-07
Jill Harrison, C., & Langdale, J. A. (2006). A step by step guide to phylogeny reconstruction. The Plant Journal, 45(4), 561–572. https://doi.org/10.1111/j.1365-313x.2005.02611.x
Kitahara, K., Yasutake, Y., & Miyazaki, K. (2012). Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proceedings of the National Academy of Sciences, 109(47), 19220–19225. https://doi.org/10.1073/pnas.1213609109
Kitching, I. J., Forey, P. L., Humphries, C. J., & Williams, D. M. (1998). Cladistics: The theory and practice of parsimony analysis (Oxford Science Publications) (2nd ed.). Oxford University Press.
Konstantinidis, K. T., & Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences, 102(7), 2567–2572. https://doi.org/10.1073/pnas.0409727102
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Laios, E., Waddington, M., Saraiya, A. A., Baker, K. A., O’Connor, E., Pamarathy, D., & Cunningham, P. R. (2004). Combinatorial genetic technology for the development of new anti-infectives. Archives of Pathology & Laboratory Medicine, 128(12), 1351–1359. https://doi.org/10.5858/2004-128-1351-cgtftd
Lee, I., Ouk Kim, Y., Park, S.-C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1100–1103. https://doi.org/10.1099/ijsem.0.000760
Mariadassou, M., Bar-Hen, A., & Kishino, H. (2012). Taxon influence index: Assessing taxon-induced incongruities in phylogenetic inference. Systematic Biology, 61(2), 337–345. https://doi.org/10.1093/sysbio/syr129
Marič, L., Cleenwerck, I., Accetto, T. ž., Vandamme, P., & Trček, J. (2020). Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. isolated from apple cider vinegar. Microorganisms, 8(8), 1178. https://doi.org/10.3390/microorganisms8081178
Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. https://doi.org/10.1016/j.fm.2013.09.003
Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P., & Willems, A. (2008). Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology, 58(1), 200–214. https://doi.org/10.1099/ijs.0.65392-0
Matsutani, M., Ito, K., Azuma, Y., Ogino, H., Shirai, M., Yakushi, T., & Matsushita, K. (2015). Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Applied Microbiology and Biotechnology, 99(17), 7229–7240. https://doi.org/10.1007/s00253-015-6598-x
Morrison, D. A. (2006). Phylogenetic analyses of parasites in the new millennium. Advances in Parasitology, 1–124. https://doi.org/10.1016/s0065-308x(06)63001-7
Naloka, K., Yukphan, P., Matsushita, K., & Theeragool, G. (2018). Molecular taxonomy and characterization of thermotolerant Komagataeibacter species for bacterial nanocellulose production at high temperatures. Chiang Mai Journal of Science, 45(4), 1610-1622.
Papathanassopoulou, A. D., & Lorentzos, N. A. (2014). Parsimony-Informative Characters. In 9th Conf. Hellenic Society for Computational Biology and Bioinformatics. pp. 10-12.
Rashid, M. H.-, Young, J. P. W., Everall, I., Clercx, P., Willems, A., Santhosh Braun, M., & Wink, M. (2015). Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_9), 3037–3045. https://doi.org/10.1099/ijs.0.000373
Rastogi, A., Gautam, S., Kumar, M., & Tomar, R. S. (2019). Ribosomal gene based comparative phylogenies for the genus Mycobacterium: An in-silicoapproach. Journal of Scientific Research, 63, 89-103.
Rehm, B. H. A. (2010). Bacterial polymers: Biosynthesis, modifications and applications. Nature Reviews Microbiology, 8(8), 578–592. https://doi.org/10.1038/nrmicro2354
Reiniati, I., Hrymak, A. N., & Margaritis, A. (2016). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510–524. https://doi.org/10.1080/07388551.2016.1189871
Ribeiro, P. L., Rapini, A., Silva, U. C. S., & Berg, C. (2012). Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae). Molecular Phylogenetics and Evolution, 65(3), 915–925. https://doi.org/10.1016/j.ympev.2012.08.019
Ryngajłło, M. ł., Jacek, P., Cielecka, I., Kalinowska, H., & Bielecki, S. ł. (2019). Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Applied Microbiology and Biotechnology, 103(16), 6673–6688. https://doi.org/10.1007/s00253-019-09904-x
Sato, M., & Miyazaki, K. (2017). Phylogenetic network analysis revealed the occurrence of horizontal gene transfer of 16S rRNA in the genus Enterobacter. Frontiers in Microbiology, 8, 1–10. https://doi.org/10.3389/fmicb.2017.02225
Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., Rozenberga, L., Vikele, L., Sabovics, M., & Cleenwerck, I. (2017). Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Applied Microbiology and Biotechnology, 101(3), 1003–1012. https://doi.org/10.1007/s00253-016-7761-8
Shavit, L., Penny, D., Hendy, M. D., & Holland, B. R. (2007). The problem of rooting rapid radiations. Molecular Biology and Evolution, 24(11), 2400–2411. https://doi.org/10.1093/molbev/msm178
Simpson, M. G. (2010). Plant Systematics (2nd ed.). San Diego, California, USA: Academic Press: pp. 35 – 36.
Soltis, P., & Doyle, J. J. (1998). Molecular Systematics of Plants II: DNA Sequencing (v. 2) (1998th ed.). Springer Science & Business Media New York: pp. 140 – 141.
Swofford, D. L., & Sullivan, J. (2003). Phylogeny inference based on parsimony and other methods using PAUP. In The Phylogenetic Handbook, A Practical Approach to DNA and Protein Phylogeny. Cambridge, England: Cambridge Univ. Press: pp. 182 –206.
Syed Ibrahim, K., Gurusubramanian, G., Zothansanga, Yadav, R. P., Senthil Kumar, N., Pandian, S. K., Borah, P., & Mohan, S. (2017). Nucleotide analysis. Bioinformatics - A Student’s Companion, 1–116. https://doi.org/10.1007/978-981-10-1857-2_1
Tian, R.-M., Cai, L., Zhang, W.-P., Cao, H.-L., & Qian, P.-Y. (2015). Rare events of intragenus and intraspecies horizontal transfer of the 16S rRNA gene. Genome Biology and Evolution, 7(8), 2310–2320. https://doi.org/10.1093/gbe/evv143
Tortoli, E., Meehan, C. J., Grottola, A., Fregni Serpini, G., Fabio, A., Trovato, A., Pecorari, M., & Cirillo, D. M. (2019). Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infection, Genetics and Evolution, 75, 1 – 17. https://doi.org/10.1016/j.meegid.2019.103983
Wilgenbusch, J. C., & Swofford, D. (2003). Inferring evolutionary trees with PAUP. Current Protocols in Bioinformatics, (1), 6-4. https://doi.org/10.1002/0471250953.bi0604s00
Yang, B., Wang, Y., & Qian, P.-Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17(1), 1–9. https://doi.org/10.1186/s12859-016-0992-y
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Journal of Academia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.