Application of Remote Sensing in Mangroves at the Surrounding of Sungai Selangor Estuary in Kuala Selangor
Keywords:
Mangrove, Forest, Remote sensing, Selangor river basinAbstract
The mangrove forest ecosystem protects the land area from the tidal wave hence preventing the coastal areas and properties from severe damage. Mangroves provide valuable ecological services and goods, sediment retention, food sources of some animals, and stabilisation of the coastal areas. Unfortunately, the species have been experiencing an extensive loss in many parts of the world. This paper aims to detect the changes in mangrove forests and possible changes in the Selangor river basin area. The methodology uses remote sensing data via supervised classification on maximum likelihood algorithm to analyse the distribution of mangrove forests at the Selangor River basin for a thirty two-year period, from 1989 to 2021. The findings indicate that the percentage of mangroves in the study area has reduced over the study period. The coverage of mangroves has reduced from 24.29 percent (1989) to 15.57 percent in 2008, and continued to reduce to 13.12 percent in 2021. The research finding indicates a decrease in mangroves due to aquaculture, tourism, agriculture, and other human activities. Such a trend may risk coastal and river erosion, thus necessitating a revision of the management policies for environmental protection.
References
Akbar, M. R., Arisanto, P. A. A., Sukirno, B. A., Merdeka, P. H., Priadhi, M. M., & Zallesa, S. (2020). Mangrove vegetation health index analysis by implementing NDVI (normalised difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. IOP Conference Series: Earth and Environmental Science, 584(1). https://doi.org/10.1088/1755-1315/584/1/012069
Alsaaideh, B., Al-Hanbali, A., Tateishi, R., Kobayashi, T., & Hoan, N. T. (2013). Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM. Journal of Geographic Information System, 05(04), 369–377. https://doi.org/10.4236/jgis.2013.54035
Amran, N. F. A., Isnan, S., Nordin, N. H., Rahman, A., Thanakodi, S., Rosli, A., & Aziz, A. (2020). Identification of Mangrove Area using Landsat Image in Kuala Selangor Nature Park. International Journal of Business and Technology Management, 2(4), 1–9.
Chamberlain, D., Phinn, S., & Possingham, H. (2020). Remote sensing of mangroves and estuarine communities in central Queensland, Australia. Remote Sensing, 12(1). https://doi.org/10.3390/RS12010197
Chowdhury, M. S. U., Othman, F., Jaafar, W. Z. W., Mood, N. C., & Adham, M. I. (2018). Assessment of pollution and improvement measure of water quality parameters using scenarios modeling for Sungai Selangor Basin. Sains Malaysiana, 47(3), 457–469. https://doi.org/10.17576/jsm-2018- 4703-05
Dan, T. T., Chen, C. F., Chiang, S. H., & Ogawa, S. (2016). Mapping and Change Analysis in Mangrove Forest By Using Landsat Imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III–8(July), 109–116. https://doi.org/10.5194/isprsannals-iii-8-109-2016
FAO. (1981). Tropical Forest Resources Assessment Project. In Forest Resources of Tropical Asia. http://www.fao.org/3/j1533e/J1533E50.htm
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011).
Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466- 8238.2010.00584.x
Hasyim, N. I., Zaharin, N. F., Hasyim, N. H., & Halim, M. A. (2019). Temporal changes of mangrove distribution in Mukim Kuala Selangor Using GIS approach. IOP Conference Series: Earth and Environmental Science.
Kanniah, K. D., Sheikhi, A., Cracknell, A. P., Goh, H. C., Tan, K. P., Ho, C. S., & Rasli, F. N. (2015).
Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sensing, 7(11), 14360–14385. https://doi.org/10.3390/rs71114360
Melesse, A. A. G. A. M. (2019). Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability.
Omar, H., H., K. A., Shamsudin, I., & S., R. B. R. (2012). Status of Mangroves in Peninsular Malaysia. Omar, H., Misman, M. A., & Linggok, V. (2018). Characterising and monitoring of mangroves in Malaysia using Landsat-based spatial-spectral variability. IOP Conference Series: Earth and
Environmental Science, 169(1). https://doi.org/10.1088/1755-1315/169/1/012037
Otero, V., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., Lucas, R., & Dahdouh-Guebas,
F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the matang mangrove forest reserve, Peninsular Malaysia. Remote Sensing, 11(7), 1–18. https://doi.org/10.3390/rs11070774
Pathmanandakumar, V. (2019). Mangrove Forest Cover Change Detection Along the Coastline of Trincomalee District, Sri Lanka Using GIS and Remote Sensing Techniques. Journal of Marine Science Research and Oceanography, 2(1). https://doi.org/10.33140/jmsro.02.01.04
Pham, L. T. H., Vo, T. Q., Dang, T. D., & Uyen, T. N. N. (2016). Monitoring mangrove association changes in the Can Gio Biosphere Reserve and implications for management. Intern. Journal of Production Economics. http://dx.doi.org/10.1016/j.ijpe.2016.07.014
Saito, H., Bellan, M. F., Al-Habshi, A., Aizpuru, M., & Blasco, F. (2003). Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf. International Journal of Remote Sensing, 24(21), 4073–4092. https://doi.org/10.1080/0143116021000035030
Sari, S. P., & Rosalina, D. (2016). Mapping and Monitoring of Mangrove Density Changes on tin Mining Area. Procedia Environmental Sciences, 33, 436–442. https://doi.org/10.1016/j.proenv.2016.03.094
Spalding, M., Kainuma, M., & Collins, L. (2010). World Atlas of Mangroves. Routledge.
Sulong, I., Mohd-Lokman, H., Mohd-Tarmizi, K., & Ismail, A. (2002). Mangrove mapping using Landsat imagery and aerial photographs: Kemaman District, Terengganu, Malaysia. Environment, Development and Sustainability, 4(2), 135–152. https://doi.org/10.1023/A:1020844620215
Van, T. T., Wilson, N., Thanh-Tung, H., Quisthoudt, K., Quang-Minh, V., Xuan-Tuan, L., Dahdouh- Guebas, F., & Koedam, N. (2015). Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecologica, 63, 71–81. https://doi.org/10.1016/j.actao.2014.11.007
Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956– 2018. Remote Sensing of Environment, 231(December 2018). https://doi.org/10.1016/j.rse.2019.111223
Zhang, X., & Tian, Q. (2013). A mangrove recognition index for remote sensing of mangrove forest from space. Current Science, 105(8), 1149–1154.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CC BY-NC-ND 4.0 DEED
Attribution-NonCommercial-NoDerivs 4.0 International








